We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
School of Mathematics and Statistics, Faculty of Science, CSIRO Digital Productivity Flagship, University of New South Wales, Sydney, NSW 2052, Australia email fhui28@gmail.com
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Hui, F. K. C., Taskinen, S., Pledger, S., Foster, S. D. and Warton, D. I., ‘Model-based approaches to unconstrained ordination’, Methods Ecol. Evol.6 (2015), 399–411.CrossRefGoogle Scholar
[2]
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Tuning parameter selection for the adaptive lasso using ERIC’, J. Amer. Statist. Assoc.110 (2015), 262–269.CrossRefGoogle Scholar
[3]
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Order selection in finite mixture models: complete or observed likelihood information criteria?’, Biometrika (2015), doi:10.1093/biomet/asv027.CrossRefGoogle Scholar
[4]
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Multi-species distribution modeling using penalized mixture of regressions’, Ann. Appl. Stat.9(2) (2015), 866–882.CrossRefGoogle Scholar
[5]
Hui, F. K. C., Warton, D. I., Foster, S. D. and Dunstan, P. K., ‘To mix or not to mix: comparing the predictive performance of mixture models versus separate species distribution models’, Ecology94 (2013), 1913–1919.CrossRefGoogle ScholarPubMed