Published online by Cambridge University Press: 17 April 2009
Let B be a topological algebra with Fréchet space topology, A an algebra with locally convex topology and an algebra of formal power series over A in n commuting indeterminates which carries a Fréchet space topology. In a previous paper the author showed, for the case n = 1, that a homomorphism of B into whose range contains polynomials is necessarily continuous provided the coordinate projections of into A satisfy a certain equicontinuity condition. This result is here extended to the case of general n, and also to weaker topological assumptions.