Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:44:28.029Z Has data issue: false hasContentIssue false

BIPARTITE DIVISOR GRAPH FOR THE PRODUCT OF SUBSETS OF INTEGERS

Published online by Cambridge University Press:  02 August 2012

R. HAFEZIEH
Affiliation:
Department of Mathematics, Yazd University, Yazd 89195-741, Iran (email: r.hafezieh@yahoo.com)
MOHAMMAD A. IRANMANESH*
Affiliation:
Department of Mathematics, Yazd University, Yazd 89195-741, Iran (email: iranmanesh@yazduni.ac.ir)
*
For correspondence; e-mail: iranmanesh@yazduni.ac.ir
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The bipartite divisor graph B(X), for a set Xof positive integers, and some of its properties have recently been studied. We construct the bipartite divisor graph for the product of subsets of positive integers and investigate some of its properties. We also give some applications in group theory.

Type
Research Article
Copyright
Copyright © 2012 Australian Mathematical Publishing Association Inc.

References

[1]Alfandary, G., ‘On graphs related to conjugacy classes of groups’, Israel J. Math. 86 (1994), 211220.CrossRefGoogle Scholar
[2]Beltran, A. & Felipe, M. J., ‘Variations on a theorem by Alan Camina on conjugacy class sizes’, J. Algebra 296 (2006), 253266.CrossRefGoogle Scholar
[3]Bertram, E. A., Herzog, M. & Mann, A., ‘On a graph related to conjugacy classes of groups’, Bull. Lond. Math. Soc. 22 (1990), 569575.CrossRefGoogle Scholar
[4]Bubboloni, D., Dolfi, S., Iranmanesh, M. A. & Praeger, C. E., ‘On bipartite divisor graphs for group conjugacy class sizes’, J. Pure Appl. Algebra 213 (2009), 17221734.CrossRefGoogle Scholar
[5]Camina, A. R. & Camina, R. D., ‘The influence of conjugacy class sizes on the structure of finite groups: a survey’, Asian-Eur. J. Math. 4(4) (2011), 559588.CrossRefGoogle Scholar
[6]Casolo, C. & Dolfi, S., ‘The diameter of a conjugacy class graph of finite groups’, Bull. London Math. Soc. 28 (1996), 141148.CrossRefGoogle Scholar
[7]Dolfi, S., ‘Arithmetical condition on the length of the conjugacy classes of a finite group’, J. Algebra 174 (1995), 753771.CrossRefGoogle Scholar
[8]Gao, D. Y., Kelarev, A. V. & Yearwood, J. L., ‘Optimization of matrix semirings for classification systems’, Bull. Aust. Math. Soc. 84 (2011), 492503.CrossRefGoogle Scholar
[9]Iranmanesh, M. A. & Praeger, C. E., ‘Bipartite divisor graphs for integer subsets’, Graphs Combin. 26 (2010), 95105.CrossRefGoogle Scholar
[10]Ito, N., ‘On finite groups with given conjugate types’, Nagoya Math. 6 (1953), 1728.CrossRefGoogle Scholar
[11]Kazarin, L. S., ‘On groups with isolated conjugacy classes’, Izv. Vyssh. Uchebn Zaved. Mat. 25 (1981), 4045.Google Scholar
[12]Kelarev, A., Ryan, J. & Yearwood, J., ‘Cayley graphs as classifiers for data mining: the influence of asymmetries’, Discrete Math. 309(17) (2009), 53605369.CrossRefGoogle Scholar
[13]Lewis, M. L., ‘An overview of graphs associated with character degrees and conjugacy class sizes in finite groups’, Rocky Mountain J. Math. 38 (2008), 175211.CrossRefGoogle Scholar
[14]Moconja, S. M. & Petrovič, Z. Z., ‘On the structure of comaximal graphs of commutative rings with identity’, Bull. Aust. Math. Soc. 83(1) (2011), 1121.CrossRefGoogle Scholar
[15]Pask, D., Raeburn, I. & Weaver, N. A., ‘Periodic 2-graphs arising from subshifts’, Bull. Aust. Math. Soc. 82(1) (2010), 120138.CrossRefGoogle Scholar
[16]Potovčnik, P., Spiga, P. & Verret, G., ‘Tetravalent arc-transitive graphs with unbounded vertex-stabilizers’, Bull. Aust. Math. Soc. 84(1) (2011), 7989.CrossRefGoogle Scholar
[17]Puglisi, O. & Spiezia, L. S., ‘On groups with all subgroups graph-complete’, Algebra Colloq. 5 (1998), 377382.Google Scholar
[18]Taeri, B., ‘Cycles and bipartite graphs on conjugacy class of groups’, Rend. Semin. Mat. Univ. Padova 123 (2010), 233247.CrossRefGoogle Scholar
[19]Xu, G. & Zhou, S., ‘Solution to a question on a family of imprimitive symmetric graphs’, Bull. Aust. Math. Soc. 82(1) (2010), 7983.CrossRefGoogle Scholar