No CrossRef data available.
Published online by Cambridge University Press: 08 November 2022
For a continuous and positive function  $w(\lambda )$,
$w(\lambda )$,  $\lambda>0$ and
$\lambda>0$ and  $\mu $ a positive measure on
$\mu $ a positive measure on  $(0,\infty )$, we consider the integral transform
$(0,\infty )$, we consider the integral transform  $$ \begin{align*} \mathcal{D}( w,\mu ) ( T) :=\int_{0}^{\infty }w(\lambda) ( \lambda +T) ^{-1}\,d\mu ( \lambda ) , \end{align*} $$
$$ \begin{align*} \mathcal{D}( w,\mu ) ( T) :=\int_{0}^{\infty }w(\lambda) ( \lambda +T) ^{-1}\,d\mu ( \lambda ) , \end{align*} $$
where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among other things that if B,  $A>0,$ then
$A>0,$ then  $\mathcal {D}( w,\mu ) $ is operator subadditive on
$\mathcal {D}( w,\mu ) $ is operator subadditive on  $(0,\infty ) $, that is,
$(0,\infty ) $, that is,  $$ \begin{align*} \mathcal{D}( w,\mu ) ( A) +\mathcal{D}( w,\mu) ( B) \geq \mathcal{D}( w,\mu )(A+B). \end{align*} $$
$$ \begin{align*} \mathcal{D}( w,\mu ) ( A) +\mathcal{D}( w,\mu) ( B) \geq \mathcal{D}( w,\mu )(A+B). \end{align*} $$
From this, we derive that if  $f:[0,\infty )\rightarrow \mathbb {R}$ is an operator monotone function on
$f:[0,\infty )\rightarrow \mathbb {R}$ is an operator monotone function on  $[0,\infty )$, then the function
$[0,\infty )$, then the function  $[ f( t) -f( 0) ] t^{-1}$ is operator subadditive on
$[ f( t) -f( 0) ] t^{-1}$ is operator subadditive on  $( 0,\infty ) .$ Also, if
$( 0,\infty ) .$ Also, if  $f:[0,\infty )\rightarrow \mathbb {R}$ is an operator convex function on
$f:[0,\infty )\rightarrow \mathbb {R}$ is an operator convex function on  $[0,\infty )$, then the function
$[0,\infty )$, then the function  $[ f( t) -f( 0) -f_{+}^{\prime }( 0) t ] t^{-2}$ is operator subadditive on
$[ f( t) -f( 0) -f_{+}^{\prime }( 0) t ] t^{-2}$ is operator subadditive on  $( 0,\infty ) .$
$( 0,\infty ) .$
 $f(A)-f(B)$
 for
$f(A)-f(B)$
 for 
 $A>B>0$
 and non-constant operator monotone function
$A>B>0$
 and non-constant operator monotone function 
 $f$
 on
$f$
 on 
 $\left[0,\infty \right)$
’, J. Math. Inequal. 9(1) (2015), 47–52.10.7153/jmi-09-04CrossRefGoogle Scholar
$\left[0,\infty \right)$
’, J. Math. Inequal. 9(1) (2015), 47–52.10.7153/jmi-09-04CrossRefGoogle Scholar