Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-11-23T19:58:03.223Z Has data issue: false hasContentIssue false

Pain and the evolutionary origins of subjective experience

Published online by Cambridge University Press:  03 November 2025

Mark Baron*
Affiliation:
Department of Neurology, Beth Israel-Deaconess Medical Center and Harvard Medical School, Blackfan Circle, Boston, USA mbaronse@bidmc.harvard.edu
Anne Minert
Affiliation:
Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, and the Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel anne.minert@mail.huji.ac.il marshlu@mail.huji.ac.il
Marshall Devor
Affiliation:
Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, and the Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel anne.minert@mail.huji.ac.il marshlu@mail.huji.ac.il
*
*Corresponding author.

Abstract

The cerebral neocortex is essential for the complex feature extractions underlying sensory perception. Pain is an exception. Its adaptive message, fight or flee, is already available at the first central synapse. We propose that raw consciousness emerged with pain. Eons later the cortical supercomputer began providing complex computational output to the primeval circuitry of conscious pain experience, already operating subcortically.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afif, A., Hoffmann, D., Minotti, L., Benabid, A. L., & Kahane, P. (2008). Middle short gyrus of the insula implicated in pain processing. Pain, 138(3), 546555. https://doi.org/10.1016/j.pain.2008.02.004 CrossRefGoogle ScholarPubMed
Andersen, G., Vestergaard, K., Ingeman-Nielsen, M., & Jensen, T. S. (1995). Incidence of central post-stroke pain. Pain, 61(2), 187193. https://doi.org/10.1016/0304-3959(94)00144-4 CrossRefGoogle ScholarPubMed
Avigdor, T., Minert, A., Baron, M., & Devor, M. (2021). Paradoxical anesthesia: sleep-like EEG during anesthesia induced by mesopontine microinjection of GABAergic agents. Experimental Neurology, 343, 113760. https://doi.org/10.1016/j.expneurol.2021.113760 CrossRefGoogle ScholarPubMed
Baron, M., & Devor, M. (2022). Might pain be experienced in the brainstem rather than in the cerebral cortex? Behavioural Brain Research, 427, 113861. https://doi.org/10.1016/j.bbr.2022.113861 CrossRefGoogle ScholarPubMed
Baron, M., & Devor, M. (2023). From molecule to oblivion: dedicated brain circuitry underlies anesthetic loss of consciousness permitting pain-free surgery. Frontiers in Molecular Neuroscience, 16, 220. https://doi.org/10.3389/FNMOL.2023.1197304 CrossRefGoogle ScholarPubMed
Davis, K. D., Kiss, Z. H. T., Luo, L., Tasker, R. R., Lozano, A. M., & Dostrovsky, J. O. (1998). Phantom sensations generated by thalamic microstimulation. Nature, 391(6665), 385387. https://doi.org/10.1038/34905 CrossRefGoogle ScholarPubMed
Devor, M., & Zalkind, V. (2001). Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain, 94(1), 101112. https://doi.org/10.1016/S0304-3959(01)00345-1 CrossRefGoogle ScholarPubMed
Fischer, D. B., Boes, A. D., Demertzi, A., Evrard, H. C., Laureys, S., Edlow, B. L., Liu, H., Saper, C. B., Pascual-Leone, A., Fox, M. D., & Geerling, J. C. (2016). A human brain network derived from coma-causing brainstem lesions. Neurology, 87(23), 24272434. https://doi.org/10.1212/WNL.0000000000003404 CrossRefGoogle ScholarPubMed
Grady, F. S., Boes, A. D., & Geerling, J. C. (2022). A century searching for the neurons necessary for wakefulness. Frontiers in Neuroscience, 16, 930514. https://doi.org/10.3389/fnins.2022.930514 CrossRefGoogle ScholarPubMed
Iannetti, G. D., & Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). In Experimental Brain Research, 205(1), 112. https://doi.org/10.1007/s00221-010-2340-1 CrossRefGoogle Scholar
Isnard, J., Magnin, M., Jung, J., Mauguière, F., & Garcia-Larrea, L. (2011). Does the insula tell our brain that we are in pain? Pain, 152(4), 946951. https://doi.org/10.1016/j.pain.2010.12.025 CrossRefGoogle ScholarPubMed
Kaiser, M. (2007). Brain architecture: a design for natural computation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1861), 30333045. https://doi.org/10.1098/rsta.2007.0007 CrossRefGoogle ScholarPubMed
Kuloğlu Pazarci, N., Bebek, N., Baykan, B., Gürses, C., & Gökyiğit, A. (2016). Reappraisal of epileptic pain as a rare symptom of seizures. Epilepsy & Behavior : E&B, 55, 101107. https://doi.org/10.1016/J.YEBEH.2015.12.015 CrossRefGoogle Scholar
Libet, B. (1973). Electrical stimulation of cortex in human subjects, and conscious sensory aspects. In Iggo, A. (Ed.), Handbook of Sensory Physiology, vol. II (pp. 743790). Springer-Verlag. https://doi.org/10.1007/978-3-642-65438-1_20 Google Scholar
Merker, B. (2007). Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behavioral and Brain Sciences, 30(1), 6381. https://doi.org/10.1017/S0140525X07000891 CrossRefGoogle ScholarPubMed
Minert, A., Yatziv, S.-L., & Devor, M. (2017). Location of the mesopontine neurons responsible for maintenance of anesthetic loss of consciousness. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 37(38), 93209331. https://doi.org/10.1523/JNEUROSCI.0544-17.2017 CrossRefGoogle ScholarPubMed
Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G., & Iannetti, G. D. (2011). A multisensory investigation of the functional significance of the “pain matrix.” NeuroImage, 54(3), 22372249. https://doi.org/10.1016/j.neuroimage.2010.09.084 CrossRefGoogle ScholarPubMed
Nair, D. R., Najm, I., Bulacio, J., Lüders, H., & Luders, H. (2001). Painful auras in focal epilepsy. Neurology, 57(4), 700702. https://doi.org/10.1212/WNL.57.4.700 CrossRefGoogle ScholarPubMed
Nashold, B. S., Wilson, W. P., & Slaughter, D. G. (1969). Sensations evoked by stimulation in the midbrain of man. Journal of Neurosurgery, 30(1), 1424. https://doi.org/10.3171/jns.1969.30.1.0014 CrossRefGoogle ScholarPubMed
Panksepp, J., Normansell, L., Cox, J. F., & Siviy, S. M. (1994). Effects of neonatal decortication on the social play of juvenile rats. Physiology and Behavior, 56(3), 429443. https://doi.org/10.1016/0031-9384(94)90285-2 CrossRefGoogle ScholarPubMed
Penfield, W. (1947). Some observations on the cerebral cortex of man. Proceedings of the Royal Society of London. Series B, Biological Sciences, 134(876), 329347. https://doi.org/10.1098/RSPB.1947.0017 Google ScholarPubMed
Posner, J. B., Saper, C. B., Schiff, N., & Plum, F. (2007). Plum and Posner’s diagnosis of stupor and coma. In Contemporary Neurology Series (4th ed.). Oxford University Press.Google Scholar
Rampil, I. J., Mason, P., & Singh, H. (1993). Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology, 78(4), 707712. https://doi.org/10.1097/00000542-199304000-00014 CrossRefGoogle ScholarPubMed
Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). The roles of primary somatosensory cortex in the coding of pain. Pain, 154(3), 334. https://doi.org/10.1016/J.PAIN.2012.10.021 CrossRefGoogle ScholarPubMed
Young, G. B., & Blume, W. T. (1983). Painful epileptic seizures. Brain : A Journal of Neurology, 106(3), 537554. https://doi.org/10.1093/BRAIN/106.3.537 CrossRefGoogle ScholarPubMed