Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:11:06.287Z Has data issue: false hasContentIssue false

Building causal knowledge in behavior genetics

Published online by Cambridge University Press:  05 May 2022

James W. Madole
Affiliation:
Department of Psychology, University of Texas at Austin, Austin, TX, USA jmadole@utexas.edu harden@utexas.edu VA Puget Sound Health Care System, Seattle, WA, USA
K. Paige Harden
Affiliation:
Department of Psychology, University of Texas at Austin, Austin, TX, USA jmadole@utexas.edu harden@utexas.edu

Abstract

Behavior genetics is a controversial science. For decades, scholars have sought to understand the role of heredity in human behavior and life-course outcomes. Recently, technological advances and the rapid expansion of genomic databases have facilitated the discovery of genes associated with human phenotypes such as educational attainment and substance use disorders. To maximize the potential of this flourishing science, and to minimize potential harms, careful analysis of what it would mean for genes to be causes of human behavior is needed. In this paper, we advance a framework for identifying instances of genetic causes, interpreting those causal relationships, and applying them to advance causal knowledge more generally in the social sciences. Central to thinking about genes as causes is counterfactual reasoning, the cornerstone of causal thinking in statistics, medicine, and philosophy. We argue that within-family genetic effects represent the product of a counterfactual comparison in the same way as average treatment effects (ATEs) from randomized controlled trials (RCTs). Both ATEs from RCTs and within-family genetic effects are shallow causes: They operate within intricate causal systems (non-unitary), produce heterogeneous effects across individuals (non-uniform), and are not mechanistically informative (non-explanatory). Despite these limitations, shallow causal knowledge can be used to improve understanding of the etiology of human behavior and to explore sources of heterogeneity and fade-out in treatment effects.

Type
Target Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulkadir, M., Herle, M., De Stavola, B. L., Hübel, C., Santos Ferreira, D. L., Loos, R. J., … Micali, N. (2020). Polygenic score for body mass index is associated with disordered eating in a general population cohort. Journal of Clinical Medicine, 9, 1187. doi: 10.3390/jcm9041187CrossRefGoogle Scholar
Abramovitch, R., Corter, C. M., & Lando, B. (1979). Sibling interaction in the home. Child Development, 50, 9971003. doi: 10.2307/1129325CrossRefGoogle Scholar
Agnew-Blais, J. C., Belsky, D. W., Caspi, A., Danese, A., Moffitt, T. E., Polanczyk, G. V., … Arseneault, L. (2021). Polygenic risk and the course of attention-deficit/hyperactivity disorder from childhood to young adulthood: Findings from a nationally representative cohort. Journal of the American Academy of Child & Adolescent Psychiatry, 60, 11471156. doi: 10.1016/j.jaac.2020.12.033CrossRefGoogle ScholarPubMed
Albert, D., Belsky, D. W., Crowley, D. M., Latendresse, S. J., Aliev, F., Riley, B., … Dodge, K. A. (2015). Can genetics predict response to complex behavioral interventions? Evidence from a genetic analysis of the Fast Track randomized control trial. Journal of Policy Analysis and Management, 34, 497518. doi: 10.1002/pam.21811CrossRefGoogle ScholarPubMed
Alda, M. (2015). Lithium in the treatment of bipolar disorder: Pharmacology and pharmacogenetics. Molecular Psychiatry, 20, 661670. doi: 10.1038/mp.2015.4CrossRefGoogle ScholarPubMed
Almond, D. (2006). Is the 1918 influenza pandemic over? Long-term effects of in utero influenza exposure in the post-1940 U.S. population. Journal of Political Economy, 114, 672712. doi: 10.1086/507154CrossRefGoogle Scholar
Almond, D., Currie, J., & Duque, V. (2018). Childhood circumstances and adult outcomes: Act II. Journal of Economic Literature, 56, 13601446. doi: 10.1257/jel.20171164CrossRefGoogle Scholar
American Psychological Association. (2023). Genetic determinism. In APA dictionary of psychology. Retrieved March 4, 2022, from https://dictionary.apa.org/genetic-determinismGoogle Scholar
Angrist, J. D. (2004). Treatment effect heterogeneity in theory and practice. The Economic Journal, 114, C52C83. doi: 10.1111/j.0013-0133.2003.00195.xCrossRefGoogle Scholar
Bailey, D. H., Duncan, G. J., Cunha, F., Foorman, B. R., & Yeager, D. S. (2020). Persistence and fade-out of educational-intervention effects: Mechanisms and potential solutions. Psychological Science in the Public Interest, 21, 5597. doi: 10.1177/1529100620915848CrossRefGoogle ScholarPubMed
Bates, J. (2020). 2020 ends as one of America's most violent years in decades. Time Magazine. Retrieved from https://time.com/5922082/2020-gun-violence-homicides-record-year/Google Scholar
Batmanian, L., Ridge, J., & Worrall, S. (2011). Biochemistry for health professionals. Elsevier Australia.Google Scholar
Belfield, C. R., Nores, M., Barnett, S., & Schweinhart, L. (2006). The high/scope Perry preschool program cost–benefit analysis using data from the age-40 followup. Journal of Human Resources, 41, 162190. doi: 10.3368/jhr.XLI.1.162CrossRefGoogle Scholar
Belsky, D. W., Domingue, B. W., Wedow, R., Arseneault, L., Boardman, J. D., Caspi, A., … Harris, K. M. (2018). Genetic analysis of social-class mobility in five longitudinal studies. Proceedings of the National Academy of Sciences, 115, E7275E7284. doi: 10.1073/pnas.1801238115CrossRefGoogle ScholarPubMed
Belsky, D. W., & Harden, K. P. (2019). Phenotypic annotation: Using polygenic scores to translate discoveries from genome-wide association studies from the top down. Current Directions in Psychological Science, 28, 8290. doi: 10.1177/0963721418807729CrossRefGoogle Scholar
Belsky, D. W., Moffitt, T. E., Baker, T. B., Biddle, A. K., Evans, J. P., Harrington, H., … Caspi, A. (2013a). Polygenic risk and the developmental progression to heavy, persistent smoking and nicotine dependence: Evidence from a 4-decade longitudinal study. JAMA Psychiatry, 70, 534542. doi: 10.1001/jamapsychiatry.2013.736CrossRefGoogle ScholarPubMed
Belsky, D. W., Moffitt, T. E., & Caspi, A. (2013b). Genetics in population health science: Strategies and opportunities. American Journal of Public Health, 103, S73S83. doi: 10.2105/AJPH.2012.301139CrossRefGoogle ScholarPubMed
Belsky, D. W., Moffitt, T. E., Corcoran, D. L., Domingue, B., Harrington, H., Hogan, S., … Caspi, A. (2016). The genetics of success: How single-nucleotide polymorphisms associated with educational attainment relate to life-course development. Psychological Science, 27, 957972. doi: 10.1177/0956797616643070CrossRefGoogle ScholarPubMed
Belsky, D. W., Moffitt, T. E., Houts, R., Bennett, G. G., Biddle, A. K., Blumenthal, J. A., … Caspi, A. (2012). Polygenic risk, rapid childhood growth, and the development of obesity: Evidence from a 4-decade longitudinal study. Archives of Pediatrics & Adolescent Medicine, 166, 515521. doi: 10.1001/archpediatrics.2012.131CrossRefGoogle ScholarPubMed
Bierut, L. J. (2011). Genetic vulnerability and susceptibility to substance dependence. Neuron, 69, 618627. doi: 10.1016/j.neuron.2011.02.015CrossRefGoogle ScholarPubMed
Block, N. (1995). How heritability misleads about race. Cognition, 56, 99128. doi: 10.1016/0010-0277(95)00678-RCrossRefGoogle ScholarPubMed
Bonell, C., Fletcher, A., Morton, M., Lorenc, T., & Moore, L. (2012). Realist randomised controlled trials: A new approach to evaluating complex public health interventions. Social Science & Medicine, 75, 22992306. doi: 10.1016/j.socscimed.2012.08.032CrossRefGoogle ScholarPubMed
Borges, J. L. (2018). The garden of forking paths. Penguin. (Original work published in 1941).Google Scholar
Bork, P., Dandekar, T., Diaz-Lazcoz, Y., Eisenhaber, F., Huynen, M., & Yuan, Y. (1998). Predicting function: From genes to genomes and back. Journal of Molecular Biology, 283, 707725. doi: 10.1006/jmbi.1998.2144CrossRefGoogle ScholarPubMed
Bourrat, P. (2020). Causation and single nucleotide polymorphism heritability. Philosophy of Science, 87, 10731083. doi: 10.1086/710517CrossRefGoogle Scholar
Bowie, G. L. (1979). The similarity approach to counterfactuals: Some problems. Noûs, 13, 477498. doi: 10.2307/2215340CrossRefGoogle Scholar
Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits: From polygenic to omnigenic. Cell, 169, 11771186. doi: 10.1016/j.cell.2017.05.038CrossRefGoogle ScholarPubMed
Brady, H. E. (2011). Causation and explanation in social science. Oxford University Press. doi: 10.1093/oxfordhb/9780199604456.013.0049CrossRefGoogle Scholar
Brody, G. H., Beach, S. R., Hill, K. G., Howe, G. W., Prado, G., & Fullerton, S. M. (2013). Using genetically informed, randomized prevention trials to test etiological hypotheses about child and adolescent drug use and psychopathology. American Journal of Public Health, 103, S19S24. doi: 10.2105/AJPH.2012.301080CrossRefGoogle ScholarPubMed
Brody, G. H., Beach, S. R., Philibert, R. A., Chen, Y. F., Lei, M. K., Murry, V. M., & Brown, A. C. (2009). Parenting moderates a genetic vulnerability factor in longitudinal increases in youths' substance use. Journal of Consulting and Clinical Psychology, 77, 111. doi: 10.1037/a0012996CrossRefGoogle ScholarPubMed
Browning, S. R., & Browning, B. L. (2011). Haplotype phasing: Existing methods and new developments. Nature Reviews Genetics, 12, 703714. doi: 10.1038/nrg3054CrossRefGoogle ScholarPubMed
Brumpton, B., Sanderson, E., Heilbron, K., Hartwig, F. P., Harrison, S., Vie, G. Å., … Davies, N. M. (2020). Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nature Communications, 11, 3519. doi: 10.1038/s41467-020-17117-4CrossRefGoogle ScholarPubMed
Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely to change the world without a heterogeneity revolution. Nature Human Behaviour, 5, 980989.CrossRefGoogle ScholarPubMed
Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., … Parkinson, H. (2019). The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Research, 47, D1005D1012. doi: 10.1093/nar/gky1120CrossRefGoogle Scholar
Cade, J. F. (1949). Lithium salts in the treatment of psychotic excitement. Medical Journal of Australia, 2, 349352.CrossRefGoogle ScholarPubMed
Cardon, L. R., & Palmer, L. J. (2003). Population stratification and spurious allelic association. The Lancet, 361, 598604. doi: 10.1016/S0140-6736(03)12520-2CrossRefGoogle ScholarPubMed
Carey, G. (1986). Sibling imitation and contrast effects. Behavior Genetics, 16, 319341. doi: 10.1007/BF01071314CrossRefGoogle ScholarPubMed
Carroll, D. (2001). Genetic recombination. In Encyclopedia of genetics (pp. 841845). Elsevier. doi: 10.1006/rwgn.2001.0543CrossRefGoogle Scholar
Carroll, S. B. (2020). A series of fortunate events: Chance and the making of the planet, life, and you. Princeton University Press.Google Scholar
Cartwright, N. (1988). Regular associations and singular causes. In Skyrms, B. & Harper, W. L. (Eds.), Causation, chance and credence (pp. 7997). Springer Netherlands. doi: 10.1007/978-94-009-2863-3_5CrossRefGoogle Scholar
Cartwright, N. (1995). Precis of Nature's Capacities and Their Measurement. Philosophy and Phenomenological Research, 55, 153156. doi: 10.2307/2108313CrossRefGoogle Scholar
Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & Laibson, D. I. (2015). The fourth law of behavior genetics. Current Directions in Psychological Science, 24, 304312. doi: 10.1177/0963721415580430CrossRefGoogle ScholarPubMed
Charlton, W. (1983). Causation and change. Philosophy, 58, 143160. doi: 10.1017/S0031819100068650CrossRefGoogle Scholar
Coleman, J. R. I., Peyrot, W. J., Purves, K. L., Davis, K. A. S., Rayner, C., Choi, S. W., … Breen, G. (2020). Genome-wide gene–environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK BioBank. Molecular Psychiatry, 25, 14301446. doi: 10.1038/s41380-019-0546-6CrossRefGoogle ScholarPubMed
Collins, F. S., & McKusick, V. A. (2001). Implications of the Human Genome Project for medical science. JAMA, 285, 540544. doi: 10.1001/jama.285.5.540CrossRefGoogle ScholarPubMed
Connolly, S., & Heron, E. A. (2015). Review of statistical methodologies for the detection of parent-of-origin effects in family trio genome-wide association data with binary disease traits. Briefings in Bioinformatics, 16, 429448. doi: 10.1093/bib/bbu017CrossRefGoogle ScholarPubMed
Corvin, A., Craddock, N., & Sullivan, P. F. (2010). Genome-wide association studies: A primer. Psychological Medicine, 40, 10631077. doi: 10.1017/S0033291709991723CrossRefGoogle ScholarPubMed
Cox, J. W., Rich, S., Chiu, A., Muyskens, J., & Ulmanu, M. (2018). More than 228,000 students have experienced gun violence at school since Columbine. Washington Post. Retrieved from https://www.washingtonpost.com/graphics/2018/local/school-shootings-database/Google Scholar
Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. The University of Chicago Press.CrossRefGoogle Scholar
Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 671. doi: 10.1037/h0043943CrossRefGoogle Scholar
Cutting, G. R. (2015). Cystic fibrosis genetics: From molecular understanding to clinical application. Nature Reviews Genetics, 16, 4556. doi: 10.1038/nrg3849CrossRefGoogle ScholarPubMed
Dar-Nimrod, I., & Heine, S. J. (2011). Genetic essentialism: On the deceptive determinism of DNA. Psychological Bulletin, 137, 800818. doi: 10.1037/a0021860CrossRefGoogle ScholarPubMed
Davey Smith, G., & Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32, 122. doi: 10.1093/ije/dyg070CrossRefGoogle Scholar
Davies, N. M., Howe, L. J., Brumpton, B., Havdahl, A., Evans, D. M., & Davey Smith, G. (2019). Within family Mendelian randomization studies. Human Molecular Genetics, 28, R170R179. doi: 10.1093/hmg/ddz204CrossRefGoogle ScholarPubMed
Dawkins, R. (2016). The extended phenotype: The long reach of the gene. Oxford University Press. (Original work published in 1982).Google Scholar
Deaton, A., & Cartwright, N. (2018). Understanding and misunderstanding randomized controlled trials. Social Science & Medicine, 210, 221. doi: 10.1016/j.socscimed.2017.12.005CrossRefGoogle ScholarPubMed
Dick, D. M. (2018). Commentary for special issue of prevention science “Using genetics in prevention: Science fiction or science fact?”. Prevention Science, 19, 101108. doi: 10.1007/s11121-017-0828-7CrossRefGoogle Scholar
Dick, D. M., Barr, P. B., Cho, S. B., Cooke, M. E., Kuo, S. I. C., Lewis, T. J., … Su, J. (2018). Post-GWAS in psychiatric genetics: A developmental perspective on the “other” next steps. Genes, Brain and Behavior, 17, e12447. doi: 10.1111/gbb.12447CrossRefGoogle ScholarPubMed
Dolan, C. V., de Kort, J. M., van Beijsterveldt, T. C. E. M., Bartels, M., & Boomsma, D. I. (2014). GE covariance through phenotype to environment transmission: An assessment in longitudinal twin data and application to childhood anxiety. Behavior Genetics, 44, 240253. doi: 10.1007/s10519-014-9659-5CrossRefGoogle ScholarPubMed
Draaisma, D. (2019). Lithium: The gripping history of a psychiatric success story. Nature, 572, 584586.CrossRefGoogle Scholar
Duncan, L. E., Ostacher, M., & Ballon, J. (2019). How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology, 44, 15181523. doi: 10.1038/s41386-019-0389-5CrossRefGoogle ScholarPubMed
Durkin, K., Lipsey, M. W., Farran, D. C., & Wiesen, S. E. (2022). Effects of a statewide pre-kindergarten program on children's achievement and behavior through sixth grade. Developmental Psychology, 58, 470484. doi: 10.1037/dev0001301CrossRefGoogle ScholarPubMed
Eaves, L. (1976). A model for sibling effects in man. Heredity, 36, 205214. doi: 10.1038/hdy.1976.25CrossRefGoogle Scholar
Elborn, J. S. (2016). Cystic fibrosis. The Lancet, 388, 25192531. doi: 10.1016/S0140-6736(16)00576-6CrossRefGoogle ScholarPubMed
Engel, G. (1977). The need for a new medical model: A challenge for biomedicine. Science (New York, N.Y.), 196, 129136. doi: 10.1126/science.847460CrossRefGoogle Scholar
Engzell, P., & Tropf, F. C. (2019). Heritability of education rises with intergenerational mobility. Proceedings of the National Academy of Sciences, 116, 2538625388. doi: 10.1073/pnas.1912998116CrossRefGoogle ScholarPubMed
Evangelou, E., Warren, H. R., Mosen-Ansorena, D., Mifsud, B., Pazoki, R., Gao, H., … Caulfield, M. J. (2018). Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 50, 14121425. doi: 10.1038/s41588-018-0205-xCrossRefGoogle ScholarPubMed
Feldman, M. W., & Lewontin, R. C. (1975). The heritability hang-up. Science, 190, 11631168. doi: 10.1126/science.1198102CrossRefGoogle ScholarPubMed
Fisher, R. A. (1925). Statistical methods for research workers (11th ed. rev.). Oliver and Boyd.Google Scholar
Fisher, R. A. (1935). The design of experiments. Oliver and Boyd.Google Scholar
Fletcher, J. M., Wu, Y., Li, T., & Lu, Q. (2021). Interpreting polygenic score effects in sibling analysis. bioRxiv. doi: 10.1101/2021.07.16.452740CrossRefGoogle Scholar
Fletcher, J. M., Wu, Y., Zhao, Z., & Lu, Q. (2020). The production of within-family inequality: Insights and implications of integrating genetic data. bioRxiv. doi: 10.1101/2020.06.06.137778CrossRefGoogle Scholar
Fox, D. (2019). Subversive science. Penn State Law Review, 124, 153.Google Scholar
Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2, 156168. doi: 10.1177/2515245919847202CrossRefGoogle Scholar
Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. Macmillan. doi: 10.1037/13474-000CrossRefGoogle Scholar
Gaskell, G., Bard, I., Allansdottir, A., Da Cunha, R. V., Eduard, P., Hampel, J., … Zwart, H. (2017). Public views on gene editing and its uses. Nature Biotechnology, 35, 10211023. doi: 10.1038/nbt.3958CrossRefGoogle ScholarPubMed
Gelman, A., & Loken, E. (2014). The statistical crisis in science. American Scientist, 102, 460465. doi: 10.1511/2014.111.460CrossRefGoogle Scholar
Glennan, S. S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 4971. doi: 10.1007/BF00172853CrossRefGoogle Scholar
Gough, A., Stern, A. M., Maier, J., Lezon, T., Shun, T.-Y., Chennubhotla, C., … Taylor, D. L. (2017). Biologically relevant heterogeneity: Metrics and practical insights. SLAS Discovery, 22, 213237. doi: 10.1177/2472555216682725CrossRefGoogle ScholarPubMed
Green, C. S. (2021). Interventions to do real-world good: Generalization and persistence. Psychological Science in the Public Interest, 21, 4349. doi: 10.1177/1529100620933847CrossRefGoogle Scholar
Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, S. J., Mallard, T. T., Hill, W. D., … Tucker-Drob, E. M. (2019). Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nature Human Behaviour, 3, 513525. doi: 10.1038/s41562-019-0566-xCrossRefGoogle ScholarPubMed
Gueron, J. M., & Rolston, H. (2013). Fighting for reliable evidence. Russell Sage.Google Scholar
Gurr, T. R. (1981). Historical trends in violent crime: A critical review of the evidence. Crime and Justice, 3, 295353. doi: 10.1086/449082CrossRefGoogle Scholar
Harrison, P. J., Cipriani, A., Harmer, C. J., Nobre, A. C., Saunders, K., Goodwin, G. M., & Geddes, J. R. (2016). Innovative approaches to bipolar disorder and its treatment. Annals of the New York Academy of Sciences, 1366, 76. doi: 10.1111/nyas.13048CrossRefGoogle ScholarPubMed
Hausman, D. M. (2005). Causal relata: Tokens, types, or variables? Erkenntnis, 63, 3354. doi: 10.1007/s10670-005-0562-6CrossRefGoogle Scholar
Haworth, S., Mitchell, R., Corbin, L., Wade, K. H., Dudding, T., Budu-Aggrey, A., … Timpson, N. J. (2019). Apparent latent structure within the UK BioBank sample has implications for epidemiological analysis. Nature Communications, 10, 333. doi: 10.1038/s41467-018-08219-1CrossRefGoogle ScholarPubMed
Heckman, J. J. (2006). Skill formation and the economics of investing in disadvantaged children. Science (New York, N.Y.), 312, 19001902. doi: 10.1126/science.1128898CrossRefGoogle ScholarPubMed
Heckman, J. J., Moon, S. H., Pinto, R., Savelyev, P. A., & Yavitz, A. (2010). The rate of return to the HighScope Perry Preschool Program. Journal of Public Economics, 94, 114128. doi: 10.1016/j.jpubeco.2009.11.001CrossRefGoogle Scholar
Herd, P., Freese, J., Sicinski, K., Domingue, B. W., Mullan Harris, K., Wei, C., & Hauser, R. M. (2019). Genes, gender inequality, and educational attainment. American Sociological Review, 84, 10691098. doi: 10.1177/0003122419886550CrossRefGoogle Scholar
Herle, M., Abdulkadir, M., Hübel, C., Ferreira, D. S., Bryant-Waugh, R., Loos, R. J., … Micali, N. (2021a). The genomics of childhood eating behaviours. Nature Human Behaviour, 5, 625630. doi: 10.1038/s41562-020-01019-yCrossRefGoogle ScholarPubMed
Herle, M., Pickles, A., & de Stavola, B. (2021b). Can interventions mitigate genomic liability for obesity? Using causal inference based mediation analyses in genetically-sensitive studies. Poster presented at the annual meeting of the Behavior Genetics Association.Google Scholar
Herrnstein, R. J., & Murray, C. A. (1996). The bell curve: Intelligence and class structure in American life (1st Free Press pbk. ed.). Simon & Schuster.Google Scholar
Hill, A. B. (2015). The environment and disease: Association or causation? Journal of the Royal Society of Medicine, 108, 3237. (Original work published in 1965). doi: 10.1177/0141076814562718CrossRefGoogle ScholarPubMed
Hill, W. D., Davies, N. M., Ritchie, S. J., Skene, N. G., Bryois, J., Bell, S., … Deary, I. J. (2019). Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nature Communications, 10, 5741. doi: 10.1038/s41467-019-13585-5CrossRefGoogle ScholarPubMed
Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945960. doi: 10.1080/01621459.1986.10478354CrossRefGoogle Scholar
Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equations models. In Clogg, C. (Ed.), Sociological methodology (pp. 449484). American Sociological Association. doi: 10.2307/271055Google Scholar
Howe, L. J., Nivard, M. G., Morris, T. T., Hansen, A. F., Rasheed, H., & Cho, Y., … Within Family Consortium (2021). Within-sibship GWAS improve estimates of direct genetic effects. bioRxiv. doi: 10.1101/2021.03.05.433935CrossRefGoogle Scholar
Hudgens, M. G., & Halloran, M. E. (2008). Toward causal inference with interference. Journal of the American Statistical Association, 103, 832842. doi: 10.1198/016214508000000292CrossRefGoogle ScholarPubMed
Hulswit, M. (2002). From cause to causation: A Peircean perspective. Springer Netherlands.CrossRefGoogle Scholar
Hume, D. (1999). An enquiry concerning human understanding (T. L. Beauchamp, Ed.). Oxford University Press. (Original work published in 1748).Google Scholar
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442. doi: 10.1038/sj.mp.4001950CrossRefGoogle ScholarPubMed
Janzen, T. (2021). Autosomal DNA testing comparison chart. In International Society of Genetic Genealogy Wiki. Retrieved from https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chartGoogle Scholar
Jensen, A. (1969). How much can we boost IQ and scholastic achievement? Harvard Educational Review, 39, 1123. doi: 10.17763/haer.39.1.l3u15956627424k7CrossRefGoogle Scholar
Jo, B., & Muthén, B. (2001). Modeling of intervention effects with noncompliance: A latent variable modeling approach for randomized trials. In Marcoulides, G. A. & Schumacker, R. E. (Eds.), New developments and techniques in structural equation modeling (pp. 5787). Erlbaum.Google Scholar
Juvenal (1769). The satires of Juvenal translated: With explanatory and classical notes, relating to the laws and customs of the Greeks and Romans. George Faulkner.Google Scholar
Kapogiannis, D., Barbey, A. K., Su, M., Zamboni, G., Krueger, F., & Grafman, J. (2009). Cognitive and neural foundations of religious belief. Proceedings of the National Academy of Sciences, 106, 48764881. doi: 10.1073/pnas.0811717106CrossRefGoogle ScholarPubMed
Karlsson Linnér, R., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., … Beauchamp, J. P. (2019). Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 51, 245257. doi: 10.1038/s41588-018-0309-3CrossRefGoogle ScholarPubMed
Karlsson Linnér, R., Mallard, T. T., Barr, P. B., Sanchez-Roige, S., Madole, J. W., Driver, M. N., … Dick, D. M. (2021). Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nature Neuroscience, 24, 13671376. doi: 10.1038/s41593-021-00908-3CrossRefGoogle ScholarPubMed
Keller, E. F. (2010). The mirage of a space between nature and nurture. Duke University Press.Google Scholar
Kendler, K. S. (2005). “A gene for…”: The nature of gene action in psychiatric disorders. American Journal of Psychiatry, 162, 12431252. doi: 10.1176/appi.ajp.162.7.1243CrossRefGoogle ScholarPubMed
Kendler, K. S., Chen, X., Dick, D., Maes, H., Gillespie, N., Neale, M. C., & Riley, B. (2012). Recent advances in the genetic epidemiology and molecular genetics of substance use disorders. Nature Neuroscience, 15, 181189. doi: 10.1038/nn.3018CrossRefGoogle ScholarPubMed
Kent, D. M., Rothwell, P. M., Ioannidis, J. P. A., Altman, D. G., & Hayward, R. A. (2010). Assessing and reporting heterogeneity in treatment effects in clinical trials: A proposal. Trials, 11, 85. doi: 10.1186/1745-6215-11-85CrossRefGoogle ScholarPubMed
Kevles, D. J. (1995). In the name of eugenics: Genetics and the uses of human heredity (1st Harvard University Press pbk. ed.). Harvard University Press.Google Scholar
Khatri, P., Sirota, M., & Butte, A. J. (2012). Ten years of pathway analysis: Current approaches and outstanding challenges. PLoS Computational Biology, 8, e1002375. doi: 10.1371/journal.pcbi.1002375CrossRefGoogle ScholarPubMed
Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjalmsson, B. J., Young, A. I., Thorgeirsson, T. E., … Stefansson, K. (2018). The nature of nurture: Effects of parental genotypes. Science (New York, N.Y.), 359, 424428. doi: 10.1126/science.aan6877CrossRefGoogle ScholarPubMed
Kuo, S. I., Salvatore, J. E., Aliev, F., Ha, T., Dishion, T. J., & Dick, D. M. (2019). The family check-up intervention moderates polygenic influences on long-term alcohol outcomes: Results from a randomized intervention trial. Prevention Science, 20, 975985. doi: 10.1007/s11121-019-01024-2CrossRefGoogle ScholarPubMed
Lahey, B. B., Waldman, I. D., & McBurnett, K. (1999). Annotation: The development of antisocial behavior: An integrative causal model. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 669682.CrossRefGoogle ScholarPubMed
Lakoff, G. (1993). The contemporary theory of metaphor. In Ortony, A. (Ed.), Metaphor and thought (2nd ed., pp. 202251). Cambridge University Press. doi: 10.1017/CBO9781139173865.013CrossRefGoogle Scholar
LaPierre, N., Taraszka, K., Huang, H., He, R., Hormozdiari, F., & Eskin, E. (2021). Identifying causal variants by fine mapping across multiple studies. PLoS Genetics, 17, e1009733.CrossRefGoogle ScholarPubMed
Lawlor, D. A., Tilling, K., & Davey Smith, G. (2017). Triangulation in aetiological epidemiology. International Journal of Epidemiology, 45, 18661886. doi: 10.1093/ije/dyw314Google Scholar
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 11121121. doi: 10.1038/s41588-018-0147-3CrossRefGoogle ScholarPubMed
LeGrys, V. A. (1996). Sweat testing for the diagnosis of cystic fibrosis: Practical considerations. The Journal of Pediatrics, 129, 892897. doi: 10.1016/S0022-3476(96)70034-3CrossRefGoogle ScholarPubMed
Lewis, D. (1973a). Counterfactuals (Rev. ed.). Blackwell.Google Scholar
Lewis, D. (1973b). Causation. The Journal of Philosophy, 70, 556567. doi: 10.2307/2025310CrossRefGoogle Scholar
Lewontin, R. C. (2006). The analysis of variance and the analysis of causes. International Journal of Epidemiology, 35, 520525. (Original work published in 1974). doi: 10.1093/ije/dyl062CrossRefGoogle ScholarPubMed
Li, S., Zhao, J. H., Luan, J. A., Ekelund, U., Luben, R. N., Khaw, K. T., … Loos, R. J. (2010). Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Medicine, 7, e1000332. doi: 10.1371/journal.pmed.1000332CrossRefGoogle ScholarPubMed
Locke, J. (1997). An essay concerning human understanding (R. S. Woolhouse, Ed.). Penguin. (Original work published in 1690).Google Scholar
Loehlin, J. C. (2009). History of behavior genetics. In Kim, Y. K. (Ed.), Handbook of behavior genetics (pp. 311). Springer. doi: 10.1007/978-0-387-76727-7_1CrossRefGoogle Scholar
Lowe, J. (2015). I don't believe in God, but I believe in Lithium. The New York Times, 25. Retrieved from https://www.nytimes.com/2015/06/28/magazine/i-dont-believe-in-god-but-i-believe-in-lithium.htmlGoogle Scholar
Lynch, K. E., Morandini, J. S., Dar-Nimrod, I., & Griffiths, P. E. (2019). Causal reasoning about human behavior genetics: Synthesis and future directions. Behavior Genetics, 49, 221234. doi: 10.1007/s10519-018-9909-zCrossRefGoogle ScholarPubMed
Mackie, J. L. (1965). Causes and conditions. American Philosophical Quarterly, 2, 245264.Google Scholar
Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., … Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. The American Journal of Human Genetics, 100, 635649. doi: 10.1016/j.ajhg.2017.03.004CrossRefGoogle ScholarPubMed
Martin, N. (2018). Getting to the genetic and environmental roots of educational inequality. Npj Science of Learning, 3, 4. doi: 10.1038/s41539-018-0021-1CrossRefGoogle Scholar
Meehl, P. E. (1972). Specific genetic etiology, psychodynamics, and therapeutic nihilism. International Journal of Mental Health, 1, 1027. doi: 10.1080/00207411.1972.11448562CrossRefGoogle Scholar
Mertens, J., Wang, Q. W., Kim, Y., Diana, X. Y., Pham, S., Yang, B., … Yao, J. (2015). Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 527, 9599. doi: 10.1038/nature15526CrossRefGoogle ScholarPubMed
Meyer, M. N., Turley, P., & Benjamin, D. J. (2020). Response to Charles Murray on polygenic scores. Medium. Retrieved from https://medium.com/@michellenmeyer/response-to-charles-murray-on-polygenic-scores-e768cf145ccGoogle Scholar
Mill, J. S. (2002). A system of logic. University Press of the Pacific. (Original work published in 1843).Google Scholar
Miller, G. A. (2010). Mistreating psychology in the decades of the brain. Perspectives on Psychological Science, 5, 716743. doi: 10.1177/1745691610388774CrossRefGoogle ScholarPubMed
Mills, M. C., & Rahal, C. (2019). A scientometric review of genome-wide association studies. Communications Biology, 2, 9. doi: 10.1038/s42003-018-0261-xCrossRefGoogle ScholarPubMed
Moffitt, T. E. (2006). Life-course-persistent versus adolescence-limited antisocial behavior. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Risk, disorder, and adaptation (pp. 570598). Wiley. doi: 10.1002/9780470939406.ch15Google Scholar
Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement: Interdisciplinary Research & Perspective, 2, 201218. doi: 10.1207/s15366359mea0204_1Google Scholar
Moscati, A., Verhulst, B., McKee, K., Silberg, J., & Eaves, L. (2018). Cross-lagged analysis of interplay between differential traits in sibling pairs: Validation and application to parenting behavior and ADHD symptomatology. Behavior Genetics, 48, 2233. doi: 10.1007/s10519-017-9882-yCrossRefGoogle ScholarPubMed
Mostafavi, H., Harpak, A., Agarwal, I., Conley, D., Pritchard, J. K., & Przeworski, M. (2020). Variable prediction accuracy of polygenic scores within an ancestry group. eLife, 9, e48376. doi: 10.7554/eLife.48376CrossRefGoogle ScholarPubMed
Munafò, M. R. (2006). Candidate gene studies in the 21st century: Meta-analysis, mediation, moderation. Genes, Brain and Behavior, 5, 38. doi: 10.1111/j.1601-183X.2006.00188.xCrossRefGoogle ScholarPubMed
Munafò, M. R., & Flint, J. (2009). Replication and heterogeneity in gene×environment interaction studies. The International Journal of Neuropsychopharmacology, 12, 727729. doi: 10.1017/S1461145709000479CrossRefGoogle Scholar
Murray, C. A. (2020). Human diversity: The biology of gender, race, and class (1st ed.). Twelve.Google Scholar
Nachman, M. W. (2002). Variation in recombination rate across the genome: Evidence and implications. Current Opinion in Genetics & Development, 12, 657663. doi: 10.1016/S0959-437X(02)00358-1CrossRefGoogle ScholarPubMed
Nagy, A., Perrimon, N., Sandmeyer, S., & Plasterk, R. (2003). Tailoring the genome: The power of genetic approaches. Nature Genetics, 33, 276284. doi: 10.1038/ng1115CrossRefGoogle ScholarPubMed
National Human Genome Research Institute (NHGRI) (2022). Talking glossary of genetic terms. Retrieved from https://www.genome.gov/genetics-glossaryGoogle Scholar
Nielsen, J. B., Thorolfsdottir, R. B., Fritsche, L. G., Zhou, W., Skov, M. W., Graham, S. E., … Willer, C. J. (2018). BioBank-driven genomic discovery yields new insight into atrial fibrillation biology. Nature Genetics, 50, 12341239. doi: 10.1038/s41588-018-0171-3CrossRefGoogle ScholarPubMed
Obama, B. (2013). State of the union address 2013 [Transcript]. Retrieved from https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/remarks-president-state-union-addressGoogle Scholar
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., … Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542. doi: 10.1038/nature17671CrossRefGoogle ScholarPubMed
Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96146. doi: 10.1214/09-SS057CrossRefGoogle Scholar
Pearl, J. (2010). The mathematics of causal relations. In Shrout, P. E. (Ed.), Causality and psychopathology (pp. 4765). Oxford University Press.Google Scholar
Pearl, J. (2018). Theoretical impediments to machine learning with seven sparks from the causal revolution. arXiv. Retrieved from https://arxiv.org/abs/1801.04016CrossRefGoogle Scholar
Perkel, J. (2008). SNP genotyping: Six technologies that keyed a revolution. Nature Methods, 5, 447453. doi: 10.1038/nmeth0508-447CrossRefGoogle Scholar
Phillips, M. S., Lawrence, R., Sachidanandam, R., Morris, A. P., Balding, D. J., Donaldson, M. A., … Cardon, L. R. (2003). Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nature Genetics, 33, 382387. doi: 10.1038/ng1100CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics: A primer (6th ed.). Worth.Google Scholar
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype–environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84, 309322. doi: 10.1037/0033-2909.84.2.309CrossRefGoogle ScholarPubMed
Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19, 148159. doi: 10.1038/nrg.2017.104CrossRefGoogle ScholarPubMed
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904909. doi: 10.1038/ng1847CrossRefGoogle ScholarPubMed
Qi, Q., Chu, A. Y., Kang, J. H., Jensen, M. K., Curhan, G. C., Pasquale, L. R., … Qi, L. (2012). Sugar-sweetened beverages and genetic risk of obesity. New England Journal of Medicine, 367, 13871396. doi: 10.1056/NEJMoa1203039CrossRefGoogle ScholarPubMed
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., … Koellinger, P. D. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science (New York, N.Y.), 340, 14671471. doi: 10.1126/science.1235488CrossRefGoogle ScholarPubMed
Rimfeld, K., Krapohl, E., Trzaskowski, M., Coleman, J. R. I., Selzam, S., Dale, P. S., … Plomin, R. (2018). Genetic influence on social outcomes during and after the Soviet era in Estonia. Nature Human Behaviour, 2, 269275. doi: 10.1038/s41562-018-0332-5CrossRefGoogle ScholarPubMed
Rosenbaum, P. R. (2007). Interference between units in randomized experiments. Journal of the American Statistical Association, 102, 191200. doi: 10.1198/016214506000001112CrossRefGoogle Scholar
Ross, L. N. (2015). Causal control: A rationale for causal selection. PhilSci Archive. Retrieved from http://philsci-archive.pitt.edu/id/eprint/11743Google Scholar
Ross, L. N. (2018). The doctrine of specific etiology. Biology & Philosophy, 33, 37. doi: 10.1007/s10539-018-9647-xCrossRefGoogle Scholar
Ross, L. N. (2019). Explanation in contexts of causal complexity: Lessons from psychiatric genetics. PhilSci Archive. Retrieved from http://philsci-archive.pitt.edu/id/eprint/15728Google Scholar
Rottman, B. M., & Hastie, R. (2014). Reasoning about causal relationships: Inferences on causal networks. Psychological Bulletin, 140, 109139. doi: 10.1037/a0031903CrossRefGoogle ScholarPubMed
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688701. doi: 10.1037/h0037350CrossRefGoogle Scholar
Rubin, D. B. (1980). Comment on: “Randomization analysis of experimental data in the fisher randomization test” by D. Basu. Journal of the American Statistical Association, 75, 591593. doi: 10.2307/2287653Google Scholar
Rubin, D. B. (1986). Comment: Which ifs have causal answers. Journal of the American Statistical Association, 81, 961962. doi: 10.1080/01621459.1986.10478355Google Scholar
Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100, 322331. doi: 10.1198/016214504000001880CrossRefGoogle Scholar
Salganik, M. J., Lundberg, I., Kindel, A. T., Ahearn, C. E., Al-Ghoneim, K., Almaatouq, A., … McLanahan, S. (2020). Measuring the predictability of life outcomes with a scientific mass collaboration. Proceedings of the National Academy of Sciences, 117, 83988403. doi: 10.1073/pnas.1915006117CrossRefGoogle ScholarPubMed
Samek, D. R., McGue, M., Keyes, M., & Iacono, W. G. (2015). Sibling facilitation mediates the association between older and younger sibling alcohol use in late adolescence. Journal of Research on Adolescence, 25, 638651. doi: 10.1111/jora.12154CrossRefGoogle ScholarPubMed
Samorodnitsky, D. (2020). A study tried to use genetics to explain why people are poor. Vice. Retrieved from https://www.vice.com/en/article/jgepv8/a-study-tried-to-use-genetics-to-explain-why-people-are-poorGoogle Scholar
Santos, R., Linker, S. B., Stern, S., Mendes, A. P., Shokhirev, M. N., Erikson, G., … Gage, F. H. (2021). Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Molecular Psychiatry, 26, 24402456. doi: 10.1038/s41380-020-00981-3CrossRefGoogle ScholarPubMed
Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype environment effects. Child Development, 54, 424435. doi: 10.1111/j.1467-8624.1983.tb03884.xGoogle Scholar
Schaefer, G. B., & Thompson, J. N. (2014). Medical genetics: An integrated approach. McGraw-Hill.Google Scholar
Schneider, B., & Bradford, L. (2020). What we are learning about fade-out of intervention effects: A commentary. Psychological Science in the Public Interest, 21, 5054. doi: 10.1177/1529100620935793CrossRefGoogle Scholar
Schweinhart, L. J., Barnes, H. V., & Weikart, D. P. (1993). Significant benefits: The High/Scope Perry preschool study through age 27. Monographs of the High/Scope Educational Research Foundation, No. 10. High/Scope Press.Google Scholar
Scott, J. (1988). Social network analysis. Sociology, 22, 109127. doi: 10.1177/0038038588022001007CrossRefGoogle Scholar
Selzam, S., Ritchie, S. J., Pingault, J.-B., Reynolds, C. A., O'Reilly, P. F., & Plomin, R. (2019). Comparing within- and between-family polygenic score prediction. The American Journal of Human Genetics, 105, 351363. doi: 10.1016/j.ajhg.2019.06.006CrossRefGoogle ScholarPubMed
Shmueli, G. (2010). To explain or to predict? Statistical Science, 25, 289310.CrossRefGoogle Scholar
Sobel, M. E. (2006). What do randomized studies of housing mobility demonstrate? Causal inference in the face of interference. Journal of the American Statistical Association, 101, 13981407. doi: 10.1198/016214506000000636CrossRefGoogle Scholar
Spencer, C. C. A., Deloukas, P., Hunt, S., Mullikin, J., Myers, S., Silverman, B., … McVean, G. (2006). The influence of recombination on human genetic diversity. PLoS Genetics, 2, e148. doi: 10.1371/journal.pgen.0020148CrossRefGoogle ScholarPubMed
Stein, Z., Susser, M., Saenger, G., & Marolla, F. (1972). Nutrition and mental performance: Prenatal exposure to the Dutch famine of 1944–1945 seems not related to mental performance at age 19. Science (New York, N.Y.), 178, 708713.CrossRefGoogle Scholar
Stern, S., Santos, R., Marchetto, M. C., Mendes, A. P. D., Rouleau, G. A., Biesmans, S., … Gage, F. H. (2018). Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Molecular Psychiatry, 23, 14531465. doi: 10.1038/mp.2016.260CrossRefGoogle Scholar
Sugrue, L. P., & Desikan, R. S. (2019). What are polygenic scores and why are they important? JAMA, 321, 18201821. doi: 10.1001/jama.2019.3893CrossRefGoogle ScholarPubMed
Thomas, J. G., & Sharp, P. B. (2019). Mechanistic science: A new approach to comprehensive psychopathology research that relates psychological and biological phenomena. Clinical Psychological Science, 7, 196215. doi: 10.1177/2167702618810223CrossRefGoogle Scholar
Tielbeek, J. J., Johansson, A., Polderman, T. J. C., Rautiainen, M.-R., Jansen, P., Taylor, M., … Posthuma, D. (2017). Genome-wide association studies of a broad spectrum of antisocial behavior. JAMA Psychiatry, 74, 12421250. doi: 10.1001/jamapsychiatry.2017.3069CrossRefGoogle ScholarPubMed
Tropf, F. C., Lee, S. H., Verweij, R. M., Stulp, G., van der Most, P. J., de Vlaming, R., … Mills, M. C. (2017). Hidden heritability due to heterogeneity across seven populations. Nature Human Behaviour, 1, 757765. doi: 10.1038/s41562-017-0195-1CrossRefGoogle ScholarPubMed
Turkheimer, E. (1998). Heritability and biological explanation. Psychological Review, 105, 782791. doi: 10.1037/0033-295X.105.4.782-791CrossRefGoogle ScholarPubMed
Turkheimer, E. (2011). Commentary: Variation and causation in the environment and genome. International Journal of Epidemiology, 40, 598601. doi: 10.1093/ije/dyq147CrossRefGoogle ScholarPubMed
Turkheimer, E., & Gottesman, I. I. (1996). Simulating the dynamics of genes and environment in development. Development and Psychopathology, 8, 667677. doi: 10.1017/S0954579400007355CrossRefGoogle Scholar
Uchiyama, R., Spicer, R., & Muthukrishna, M. (2021). Cultural evolution of genetic heritability. Behavioral and Brain Sciences, 45, e152. doi: 10.1017/S0140525X21000893Google ScholarPubMed
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., … Zhu, X. (2001). The sequence of the human genome. Science, 291, 13041351. doi: 10.1126/science.1058040CrossRefGoogle ScholarPubMed
Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era—concepts and misconceptions. Nature Reviews Genetics, 9, 255266.CrossRefGoogle ScholarPubMed
Volkmann, C., Bschor, T., & Köhler, S. (2020). Lithium treatment over the lifespan in bipolar disorders. Frontiers in Psychiatry, 11, 377. doi: 10.3389/fpsyt.2020.00377CrossRefGoogle ScholarPubMed
Wang, N., Akey, J. M., Zhang, K., Chakraborty, R., & Jin, L. (2002). Distribution of recombination crossovers and the origin of haplotype blocks: The interplay of population history, recombination, and mutation. The American Journal of Human Genetics, 71, 12271234. doi: 10.1086/344398CrossRefGoogle ScholarPubMed
Warner, J. (2018). Why we shouldn't embrace the genetics of education. Inside Higher Ed. Retrieved from https://www.insidehighered.com/blogs/just-visiting/why-we-shouldnt-embrace-genetics-educationGoogle Scholar
Watanabe, K., Mirkov, M. U., de Leeuw, C. A., van den Heuvel, M. P., & Posthuma, D. (2019). Genetic mapping of cell type specificity for complex traits. Nature Communications, 10, 113. doi: 10.1038/s41467-019-11181-1CrossRefGoogle ScholarPubMed
Watanabe, K., Taskesen, E., van Bochoven, A., & Posthuma, D. (2017). Functional mapping and annotation of genetic associations with FUMA. Nature Communications, 8, 1826. doi: 10.1038/s41467-017-01261-5CrossRefGoogle ScholarPubMed
Waters, C. K. (2007). Causes that make a difference. The Journal of Philosophy, 104, 551579. doi: 10.5840/jphil2007104111CrossRefGoogle Scholar
White, M. J., Yaspan, B. L., Veatch, O. J., Goddard, P., Risse-Adams, O. S., & Contreras, M. G. (2019). Strategies for pathway analysis using GWAS and WGS data. Current Protocols in Human Genetics, 100, e79. doi: 10.1002/cphg.79CrossRefGoogle ScholarPubMed
Woodward, J. (2002). What is a mechanism? A counterfactual account. Philosophy of Science, 69, S366S377. doi: 10.1086/341859CrossRefGoogle Scholar
Woodward, J. (2005). Making things happen: A theory of causal explanation. Oxford University Press.Google Scholar
Woodward, J. (2010). Causation in biology: Stability, specificity, and the choice of levels of explanation. Biology & Philosophy, 25, 287318. doi: 10.1007/s10539-010-9200-zCrossRefGoogle Scholar
Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M., & Price, A. L. (2014). Advantages and pitfalls in the application of mixed-model association methods. Nature Genetics, 46, 100106. doi: 10.1038/ng.2876CrossRefGoogle ScholarPubMed
Yang, J., Zeng, J., Goddard, M. E., Wray, N. R., & Visscher, P. M. (2017). Concepts, estimation and interpretation of SNP-based heritability. Nature Genetics, 49, 13041310. doi: 10.1038/ng.3941CrossRefGoogle ScholarPubMed
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12, 11001122.CrossRefGoogle ScholarPubMed
Young, A. I., Benonisdottir, S., Przeworski, M., & Kong, A. (2019). Deconstructing the sources of genotype–phenotype associations in humans. Science, 365, 13961400. doi: 10.1126/science.aax3710CrossRefGoogle ScholarPubMed
Young, A. I., Frigge, M. L., Gudbjartsson, D. F., Thorleifsson, G., Bjornsdottir, G., Sulem, P., … Kong, A. (2018). Relatedness disequilibrium regression estimates heritability without environmental bias. Nature Genetics, 50, 13041310. doi: 10.1038/s41588-018-0178-9CrossRefGoogle ScholarPubMed
Zaidi, A. A., & Mathieson, I. (2020). Demographic history mediates the effect of stratification on polygenic scores. eLife, 9, e61548. doi: 10.7554/eLife.61548CrossRefGoogle ScholarPubMed