Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-11-21T11:10:02.203Z Has data issue: false hasContentIssue false

Social cognition: A crucial indicator of higher-order cognitive ability across the animal phyla

Published online by Cambridge University Press:  03 November 2025

Barnini Bhattacharya
Affiliation:
Cognitive Systems and Cybernetics Research Laboratory, Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India bb18081992@gmail.com kuntalghos@gmail.com
Kuntal Ghosh*
Affiliation:
Cognitive Systems and Cybernetics Research Laboratory, Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India bb18081992@gmail.com kuntalghos@gmail.com
*
*Corresponding author.

Abstract

Social cognition (SC) constitutes a predominant aspect of complex cognition (CC) especially in non-human animals. Apart from bees, ants and birds, fish, particularly the teleost group, are considered as an emerging model organism to study vertebrate SC. The commentary deals with some of the CC traits of SC across different families of teleost fish that have been experimentally reported.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bennett, M. S. (2023). A brief history of intelligence: Evolution, AI, and the five breakthroughs that made our brains. HarperCollins.Google Scholar
Clark, C. W., & Mangel, M. (1984). Foraging and flocking strategies: Information in an uncertain environment. The American Naturalist, 123(5), 626641.CrossRefGoogle Scholar
Davis, C. M. (2017). Animal models for studying substance use disorder: Place and taste conditioning. In Michael Conn, P. (Ed.), Animal models for the study of human disease (2nd ed., pp. 556584). Academic Press.CrossRefGoogle Scholar
Day, R. L., MacDonald, T., Brown, C., Laland, K. N., & Reader, S. M. (2001). Interactions between shoal size and conformity in guppy social foraging. Animal Behaviour, 62(5), 917925.CrossRefGoogle Scholar
Desjardins, J. K., Stiver, K. A., Fitzpatrick, J. L., Milligan, N., Van Der Kraak, G. J., & Balshine, S. (2008). Sex and status in a cooperative breeding fish: Behavior and androgens. Behavioral Ecology and Sociobiology, 62, 785794.CrossRefGoogle Scholar
Fischer, S., Ataalla, S., Gabrielidis, X., Rohdmann, B., Yazar, D., & Jungwirth, A. (2024). Comparative conflict resolution: Cooperative cichlids outperform less social species. Animal Behaviour, 208, 91109.CrossRefGoogle Scholar
Franks, B., Gaffney, L. P., Graham, C., & Weary, D. M. (2023). Curiosity in zebrafish (Danio rerio)? Behavioral responses to 30 novel objects. Frontiers in Veterinary Science, 9, 1062420.CrossRefGoogle ScholarPubMed
Hasenjager, M. J. (2021). Cooperation among fishes. In Shackelford, T. K., & Weekes-Shackelford, V. A. (Eds.), Encyclopedia of evolutionary psychological science (pp. 14381445). Springer.CrossRefGoogle Scholar
Hintz, W. D., & Lonzarich, D. G. (2018). Maximizing foraging success: The roles of group size, predation risk, competition, and ontogeny. Ecosphere, 9(10), e02456.CrossRefGoogle Scholar
Klüver, J. (2009). Social cognitive complexity. In Meyers, R. (Ed.), Encyclopedia of complexity and systems science (pp. 81838198). Springer.CrossRefGoogle Scholar
Lai, N. H. Y., Mohd Zahir, I. A., Liew, A. K. Y., Ogawa, S., Parhar, I., & Soga, T. (2023). Teleosts as behaviour test models for social stress. Frontiers in Behavioral Neuroscience, 17, 1205175.CrossRefGoogle ScholarPubMed
Marques, J. C., Li, M., Schaak, D., Robson, D. N., & Li, J. M. (2020). Internal state dynamics shape brainwide activity and foraging behaviour. Nature, 577(7789), 239243.CrossRefGoogle ScholarPubMed
Mayer, I., & Pšenička, M. (2024). Conservation of teleost fishes: Application of reproductive technologies. Theriogenology Wild, 4, 100078.CrossRefGoogle Scholar
Nunes, A. R., Carreira, L., Anbalagan, S., Blechman, J., Levkowitz, G., & Oliveira, R. F. (2020). Perceptual mechanisms of social affiliation in zebrafish. Scientific Reports, 10(1), 3642.CrossRefGoogle ScholarPubMed
Polverino, G., Abaid, N., Kopman, V., Macrì, S., &Porfiri, M. (2012). Zebrafish response to robotic fish: Preference experiments on isolated individuals and small shoals. Bioinspiration & biomimetics, 7(3), 036019.CrossRefGoogle ScholarPubMed
Sefc, K. M. (2011). Mating and parental care in Lake Tanganyika’s Cichlids. International Journal of Evolutionary Biology, 2011(1), 470875.CrossRefGoogle ScholarPubMed
Xie, Q., Wang, L., Yang, S., Hu, J., Li, W., Yang, W., … & Zhang, P. (2025). Collective behavior and upstream tactics of schooling fish in an obstacle environment. Environmental Biology of Fishes, 108(5):853874.CrossRefGoogle Scholar
Zala, S. M., & Määttänen, I. (2013). Social learning of an associative foraging task in zebrafish. Naturwissenschaften, 100, 469472.CrossRefGoogle ScholarPubMed