We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study tested the hypothesis that late weaning and the availability of creep feed during the suckling period compared with early weaning, improves feed intake, decreases stress and improves the integrity of the intestinal tract. In this study with 160 piglets of 16 litters, late weaning at 7 weeks of age was compared with early weaning at 4 weeks, with or without creep feeding during the suckling period, on post-weaning feed intake, plasma cortisol (as an indicator of stress) and plasma intestinal fatty acid binding protein (I-FABP; a marker for mild intestinal injury) concentrations, intestinal morphology, intestinal (macro)molecular permeability and intestinal fluid absorption as indicators of small intestinal integrity. Post-weaning feed intake was similar in piglets weaned at 4 weeks and offered creep feed or not, but higher (P < 0.001) in piglets weaned at 7 weeks with a higher (P < 0.05) intake for piglets offered creep feed compared with piglets from whom creep feed was witheld. Plasma cortisol response at the day of weaning was lower in piglets weaned at 7 weeks compared with piglets weaned at 4 weeks, and creep feed did not affect cortisol concentration. Plasma I-FABP concentration was not affected by the age of weaning and creep feeding. Intestinal (macro)molecular permeability was not affected by the age of weaning and creep feeding. Both in uninfected and enterotoxigenic Escherichia coli-infected small intestinal segments net fluid absorption was not affected by the age of weaning or creep feeding. Creep feeding, but not the age of weaning, resulted in higher villi and increased crypt depth. In conclusion, weaning at 7 weeks of age in combination with creep feeding improves post-weaning feed intake and reduces weaning stress but does not improve functional characteristics of the small intestinal mucosa.
International Conference Livestock and Global Climate Change, Hammamet, Tunisia, May 2008
In the UK, recent mean temperatures have consistently increased by between 1°C and 4°C compared to the 30-year monthly averages. Furthermore, all available predictive models for the UK indicate that the climate is likely to change further and feature more extreme weather events and a trend towards wetter, milder winters and hotter, drier summers. These changes will alter the prevalence of endemic diseases spatially and/or temporally and impact on animal health and welfare. Most notable among these endemic parasites are the helminths, which have been shown to be very strongly influenced by both the short-term weather and climate through effects on their free-living larval stages on pasture. In this review, we examine recent trends in prevalence and epidemiology of key helminth species and consider whether these could be climate-related. We identify likely effects of temperature and rainfall on the free-living stages and some key parasite traits likely to determine parasite abundance under changed climatic conditions. We find clear evidence that climate change, especially elevated temperature, has already changed the overall abundance, seasonality and spatial spread of endemic helminths in the UK. We explore some confounders and alternative explanations for the observed patterns. Finally, we explore the implications of these findings for policy makers and the livestock industry and make some recommendations for future research priorities.
In order to contribute to the genetic breeding programs of buffaloes, this study aimed to determine the influence of environmental effects on the stayability (ST) of dairy female Murrah buffalo in the herd. Data from 1016 buffaloes were used. ST was defined as the ability of the female to remain in the herd for 1, 2, 3, 4, 5 or 6 years after the first calving. Environmental effects were studied by survival analysis, adjusted to the fixed effects of farm, year and season of birth, class of first-lactation milk yield and age at first calving. The data were analyzed using the LIFEREG procedure of the SAS program that fits parametric models to failure time data (culling or ST = 0), and estimates parameters by maximum likelihood estimation. Breeding farm, year of birth and first-lactation milk yield significantly influenced (P < 0.0001) the ST to the specific ages (1 to 6 years after the first calving). Buffaloes that were older at first calving presented higher probabilities of being culled 1 year after the first calving, without any effect on culling at older ages. Buffaloes with a higher milk yield at first calving presented a lower culling probability and remained for a longer period of time in the herd. The effects of breeding farm, year of birth and first-lactation milk yield should be included in models used for the analysis of ST in buffaloes.
Several physiological and biological variables are known to affect peroxisome proliferator-activated receptor (PPAR)-α-dependent signaling pathway and plasma biochemical profiles. However, less is known about the effect of these variables on high-fat diet-fed mice. In a 5-week study, C57BL/6 mice were divided into control (C) and high-fat diet-fed (H) groups, whereby before dissection, each group was subdivided into non-fasted (nC and nH) and a 15-h fasted mice (fC and fH) killed in the early light cycle, and a 15-h fasted mice (eC and eH) killed in the late phase of the light cycle. Liver and blood from the vena cava were collected. Non-fasted nC and nH mice have a marginal difference in their body weight gain, whereas significant differences were found for fasted mice. In nH mice, PPAR-α, acyl-CoA oxidase and insulin-like growth factor-binding protein expressions were significantly elevated, in contrast to fatty acid synthase (Fasn), stearoyl CoA-desaturase (SCD)-1, and elongase (ELOVL)-6 expressions. Fasn was profoundly induced in fH mice, while decreased sterol regulatory-binding protein-1 and SCD-1 were found only in eH mice. Different from the gene expression profiles, plasma total cholesterol level of the eH mice was higher than controls, whereas nH mice have increased plasma non-esterified fatty acids. Only glucose level of the fH mice was higher than that observed for controls. Results showed that fasting and sampling time have significantly affected liver gene expression and plasma biochemical indices of the high-fat diet-treated mice. An overlook in these aspects can cause serious discrepancies in the experimental data and their interpretations.
Secretion of saliva as well as absorptive and secretory processes across forestomach epithelia ensures an optimal environment for microbial digestion in the forestomachs. Daily salivary secretion of sodium (Na+) exceeds the amount found in plasma by a factor of 2 to 3, while the secretion of bicarbonate (HCO3−) is 6 to 8 times higher than the amount of HCO3− in the total extracellular space. This implies a need for efficient absorptive mechanisms across forestomach epithelia to allow for an early recycling. While Na+ is absorbed from all forestomachs via Na+/H+ exchange and a non-selective cation channel that shows increased conductance at low concentrations of Mg2+, Ca2+ or H+ in the luminal microclima and at low intracellular Mg2+, HCO3− is secreted by the rumen for the buffering of ingesta but absorbed by the omasum to prevent liberation of CO2 in the abomasum. Fermentation provides short chain fatty acids and ammonia (NH3) that have to be absorbed both to meet nutrient requirements and maintain ruminal homeostasis of pH and osmolarity. The rumen is an important location for the absorption of essential minerals such as Mg2+ from the diet. Other ions can be absorbed, if delivered in sufficient amounts (Ca2+, Pi, K+, Cl− and NH4+). Although the presence of transport mechanisms for these electrolytes has been described earlier, our knowledge about their nature, regulation and crosstalk has increased greatly in the last years. New transport pathways have recently been added to our picture of epithelial transport across rumen and omasum, including an apical non-selective cation conductance, a basolateral anion conductance, an apical H+-ATPase, differently expressed anion exchangers and monocarboxylate transporters.
For Swedish Warmblood sport horses, breeding values (BVs) are predicted using a multiple-trait animal model with results from competitions and young horse performance tests. Data go back to the beginning of the 1970s, and earlier studies have indicated that some of the recorded traits have changed through the years. The objective of this study was to investigate the effects of including all performance data or excluding the older ones compared to a bivariate model (BM) considering performance traits in early and late periods as separate traits. The bivariate approach was assumed to give the most correct BVs for the actual breeding population. Competition results in dressage and show jumping for almost 40 000 horses until 2006 were available. For riding horse quality test (RHQT), data of 14 000 horses judged between 1973 and 2007 were used. Genetic correlations of 0.69 to 1.00 were estimated between traits recorded at different time periods (RHQT data) or different birth year groups (competition data). A cross-validation study and comparison of BVs using different sets of data showed that most accurate and similar results were obtained when BVs were predicted from either the BM or the univariate model including all data from the beginning of the recording. We recommend using all data and applying the univariate model to minimise the computational efforts for genetic evaluations and for provision of reliable BVs for as many horses as possible.
The study was conducted to evaluate the effects of dietary zinc addition (0 or 15 mg/kg of Zn as inorganic or organic zinc) to three maize–soybean meal basal diets varying in their native Zn, phytic P contents and phytase activity (expressed in kg of feed: P− with 25 mg Zn and 1.3 g phytic P, P+ with 38 mg Zn and 2.3 g phytic P or P+/ENZ being P+ including 500 units (FTU) of microbial phytase per kg) in two monogastric species (piglets, broilers). Measured parameters were growth performance, zinc status (plasma, and bone zinc) and soluble zinc in digesta (stomach, gizzard and intestine). The nine experimental diets were fed for 20 days either to weaned piglets (six replicates per treatment) or to 1-day-old broilers (10 replicates per treatment). Animal performance was not affected by dietary treatments (P > 0.05) except that all P− diets improved body weight gain and feed conversion ratio in piglets (P < 0.05). Piglets fed P− diets had a better Zn status than those fed P+ diets (P < 0.05). In both species, Zn status was improved with supplemental Zn (P < 0.05), irrespective of Zn source. Phytase supplementation improved piglet Zn status to a higher extent than adding dietary Zn, whereas in broilers, phytase was less efficient than supplemental Zn. Digestive Zn concentrations reflected the quantity of ingested Zn. Soluble Zn (mg/kg dry matter) and Zn solubility (% of total Zn content) were highest in gizzard contents, which also presented lower pH values than stomach or intestines. The intestinal Zn solubility was higher in piglet fed organic Zn than those fed inorganic Zn (P < 0.01). Phytase increased soluble Zn in piglet stomach (P < 0.001) and intestine (P = 0.1), but not in broiler gizzard and intestinal contents. These results demonstrate (i) that dietary zinc was used more efficiently by broilers than by piglets, most probably due to the lower gizzard pH and its related higher zinc solubility; (ii) that zinc supplementation, irrespective of zinc source, was successful in improving animal’s zinc status; and (iii) suggest that supplemented Zn availability was independent from the diet formulation. Finally, the present data confirm that phytase was efficient in increasing digestive soluble Zn and improving zinc status in piglets. However, the magnitude of these effects was lower in broilers probably due to the naturally higher Zn availability in poultry than in swine.
Gestation length and maternal ability are important to improve the sow reproduction efficiency and their offspring survival. To map quantitative trait loci (QTL) for gestation length and maternal ability related traits including piglet survival rate and average body weight of piglets at weaning, more than 200 F2 sows from a White Duroc × Erhualian resource population were phenotyped. A genome-wide scan was performed with 194 microsatellite markers covering the whole pig genome. QTL analysis was carried out using a composite regression interval mapping method via QTL express. The results showed that total number of born piglets was significantly correlated with gestation length (r = −0.13, P < 0.05). Three QTL were detected on pig chromosome (SSC)2, 8 and 12 for gestation length. The QTL on SSC2 achieved the 5% genome-wide significant level and the QTL on SSC8 was consistent with previous reports. Four suggestive QTL were identified for maternal ability related traits including 1 QTL for survival rate of piglets at weaning on SSC8, 3 QTL for average body weight of piglet at weaning on SSC3, 11 and 13.
EAAP Annual Meeting 2008 Satellite: The European research on fine fibre-producing animals
Hair ‘fine’ fibre is an important commercial product of farmed and certain wild animal species. The fibre is produced in follicles embedded in skin. These have properties in common with other tissues of the integument and have importance in determining yield and quality of fibre. Means of understanding and improving these characteristics are informed by knowledge of integumental and follicle biology. This paper reviews contemporary information that identifies the major fibre-producing species and their production characteristic. It surveys knowledge describing fundamental biology of the integument and considers information derived for the hair follicle from studies on a number of species including genetically modified mice. It identifies the composition of the follicle and describes components and interrelationships between epidermal hair-fibre producing epidermis and fibroblast- and connective tissue-containing dermis. The structure of different primary and secondary follicle types, and associated structures, are described. Focus is given to the alterations in anatomy and in behaviour from active to inactive state, which occurs during the hair follicle cycle. Information is provided on the anatomical substructures (hair medulla, cortex, cuticles and supporting sheaths and dermal papilla), cellular and extracellular composition, and adhesion and chemical signalling systems, which regulate development from the early embryo to post-natal state and subsequent cycling. Such signalling involves the dermis and its specialist fibroblasts, which secrete signalling molecules, which along with those from local epidermis and systemic sources, largely determine structure and function of epidermal cells. Such chemical signalling typically includes endocrine-, paracrine-, autocrine- and juxtacrine-acting molecules and interactions with their receptors located on cell membranes or intracellularly with transduction of message mediated by transcription factors at gene level. Important hormones and growth factors and inhibitors regulating morphogenic and/or mitogenic activity are identified. These mediate mechanisms associated with presence or absence in skin and development of patterning for primary or secondary follicles. Reference is made to deposition of individual keratins and keratin-associated proteins in follicle sub-structures and to fibre properties such as length, diameter, medullation, crimp and lustre. Pre- and post-natal regulation of pigmentation by melanocytes is reviewed. Brief attention is given to genomic and non-genomic variation and impact on the phenotypes expressed and the role of regulatory gene products as potential molecular markers for selection of superior animals. The importance of nutrients in providing substrates for follicular structures and enzymes and in molecules facilitating gene expression is also considered.
The demand for special breeding programmes for organic pig meat production is based on the assumption that pigs kept under organic conditions need different biological properties compared with conventionally kept pigs in order to achieve a good performance. This would mean that genotype–environment interactions exist. Therefore, 682 pigs of seven different genotypes were tested for growth performance and carcass quality under conventional and organic environments at two testing stations to verify genotype–environment interactions. All genotypes achieved significantly better results within the conventional environment and there were significant interactions between genotype and environment for all the criteria of growth performance and carcass quality. The interactions are mainly caused by varying differences between organic and conventional systems within genotypes, but for all traits, except weight gain, no major shift of the ranking order within environment between genotypes. Although statistically significant genotype–environment interactions exist, the modern genotypes selected under conventional conditions are also superior to indigenous breeds under organic conditions in economically important traits. Hence, it can be concluded from these results that no special breeding programme is necessary for organic production systems.
The study was conducted to validate in vitro prediction of standardised ileal digestibilities (SID) of crude protein (CP) and amino acids (AA) in grain legumes for growing pigs using six different cultivars of faba beans (Vicia faba), six different cultivars of field peas (Pisum sativum), and five different cultivars of lupins (Lupinus spp.). The SID for CP and AA were predicted from in vitro analysis by means of a two-step enzymatic method using pepsin and pancreatin incubations. In vitro predicted SID values of CP and AA were generally higher than the corresponding SID values measured in vivo. There were strong linear relationships (r2 = 0.73 for Lys to r2 = 0.91 for Cys and Trp) between in vivo and in vitro predicted SID values in the assay feed ingredients if grain legume species (i.e. faba beans, field peas and lupins) was included as a covariate in multiple linear regression analysis. However, to rapidly and accurately predict SID of CP and AA in individual batches of various feed ingredients, further studies are warranted.
The present experiment examined the effect of offering either a high- (H) or low- (L) energy-density diet in late gestation and early lactation on physiological parameters, body condition score (BCS) and milk production in early lactation. In all, 40 multiparous Holstein cows were randomly allocated to one of four treatments in a 2 × 2 factorial design, where the factors were H- or L-energy density in a total mixed ration (TMR) both pre- and post-calving. Consequently, there were four treatment groups: HH, HL, LL and LH. The pre-calving treatment was initiated 100 days prior to expected calving; the H TMR was fed ad libitum whereas the L TMR was restricted to 10 kg dry matter/day during late lactation, and to approximately 75% of energy requirements from drying off until calving. Both diets were offered ad libitum post-calving. Feeding diet H compared to L pre-calving led to higher BCS at calving (2.68 v. 2.34, P < 0.01). Energy corrected milk yield and energy-intake post-calving were not affected by pre-calving diets. Changes in BCS and blood concentrations of non-esterified fatty acids, beta-hydroxybutyrate and glucose in early lactation showed that cows offered diet H pre-calving generally mobilised more body reserves compared to cows offered diet L pre-calving. An interaction between pre- and post-calving diets showed that cows offered diet H pre-calving had lower body tissue mobilisation when offered diet H post-calving compared to diet L. Cows offered diet L pre-calving, did not mobilise differently whether they were offered diet H or L post-calving. The pre- and post-calving diets had no effect on liver triacylglycerol, whereas liver glycogen was higher in cows on treatment HH compared to the other three treatments. Collectively, these results indicate that overfeeding should be avoided in late gestation and that a high-energy-density diet is desirable in early lactation in order to obtain a more favourable metabolic profile.
The presence of DNA fragments in blood and milk from goats fed conventional (control) or Roundup Ready® soybean meal solvent extracted (s.e.; treated) was investigated by using a polymerase chain reaction approach. The same investigation was carried out on blood, skeletal muscle and organs from kids of both groups fed only dams’ milk until weaning. Moreover, the possible effects on cell metabolism were evaluated by determination of several specific enzymes in serum, heart, skeletal muscle, liver and kidney. Fragments of the multicopy chloroplast (trnL) gene were found in blood and milk samples from goats of both groups. In kids, the chloroplast fragments were found in samples of both groups. In samples, which proved positive for the presence of chloroplast DNA, fragments of the specific soybean single copy gene (lectin) were detected in several blood and milk samples. The same fragment was also found in control and treated groups of kids. Transgenic fragments were not found in those samples, which were found positive for chloroplast fragments of control groups of either goats or kids. On the contrary, in blood and milk of treated goats, fragments both of the 35S promoter and the CP4 epsps gene were detected. These fragments were also found in treated kids with a significant detection of the 35S promoter in liver, kidney and blood, and of the CP4 epsps gene fragment in liver, kidney, heart and muscle. A significant increase in lactic dehydrogenase, mainly concerning the lactic dehydrogenase-1 isoenzyme was found in heart, skeletal muscle and kidney of treated kids, thus suggesting a change in the local production of the enzyme. Finally, no significant differences were detected concerning kid body and organ weight.
A quantitative trait loci (QTL) analysis of wool traits from experimental half-sib data of Merino sheep is presented. A total of 617 animals distributed in 10 families were genotyped for 36 microsatellite markers on four ovine chromosomes OAR1, OAR3, OAR4 and OAR11. The markers covering OAR3 and OAR11 were densely spaced, at an average distance of 2.8 and 1.2 cM, respectively. Body weight and wool traits were measured at first and second shearing. Analyses were conducted under three hypotheses: (i) a single QTL controlling a single trait (for multimarker regression models); (ii) two linked QTLs controlling a single trait (using maximum likelihood techniques) and (iii) a single QTL controlling more than one trait (also using maximum likelihood techniques). One QTL was identified for several wool traits on OAR1 (average curvature of fibre at first and second shearing, and clean wool yield measured at second shearing) and on OAR11 (weight and staple strength at first shearing, and coefficient of variation of fibre diameter at second shearing). In addition, one QTL was detected on OAR4 affecting weight measured at second shearing. The results of the single trait method and the two-QTL hypotheses showed an additional QTL segregating on OAR11 (for greasy fleece weight at first shearing and clean wool yield trait at second shearing). Pleiotropic QTLs (controlling more than one trait) were found on OAR1 (clean wool yield, average curvature of fibre, clean and greasy fleece weightand staple length, all measured at second shearing).
The correlation between rumen chemical and bacterial changes was investigated during a four periodical stepwise adaptation to a high-concentrate diet (concentrate level at 0%, 30%, 50% and 70% for diet I to IV, respectively) in goats. The results showed that ruminal pH decreased from 6.7 to 5.5 after switching from diet I to II, and was maintained at about 5.5 on diet III. Denaturing gradient gel electrophoresis results showed that the rumen bacterial community was relatively stable during the initial three feeding periods, except for the appearance of three bands when diet changed from I to II, suggesting that an appropriate concentrate level can promote the proliferation of some bacteria. After 12 days of feeding diet III, total volatile fatty acid (VFA) concentration and butyrate proportion decreased. At days 2 and 3 of feeding diet IV, ruminal pH declined sharply to 5.3 and 4.7, respectively, and total VFA concentration decreased further while lactic acid concentration increased markedly, suggesting a relation between lactic acid accumulation and ruminal pH decline. At the same time, many bacteria disappeared, including most fibrolytic-related bacteria while Streptococcus bovis and Prevotella-like species dominated. Interestingly, Succinivibrio dextrinosolvens-like species maintained throughout the experiment, suggesting its tolerance to low pH. In conclusion, rumen bacterial community was relatively stable feeding 0% to 50% concentrate diets, and it was observed that appropriate concentrate levels in the diet could increase the diversity of rumen bacteria. However, concentrate-rich diets caused lactic acid accumulation and low ruminal pH that caused the disappearance of most fibrolytic-related bacteria sensitive to low pH while S. bovis and genus Prevotella persisted.
Empirical and factorial methods are currently used to estimate nutrient requirements for domestic animals. The purpose of this study was to estimate the nutrient requirements of a given pig population using the empirical and factorial methods; to establish the relationship between the requirements estimated with these two methods; and to study the limitations of the methods when used to determine the level of a nutrient needed to optimize individual and population responses of growing pigs. A systematic analysis was carried out on optimal lysine-to-net-energy (Lys : NE) ratios estimated by the empirical and factorial methods using a modified InraPorc® growth model. Sixty-eight pigs were individually simulated based on detailed experimental data. In the empirical method, population responses were estimated by feeding pigs with 11 diets of different Lys : NE ratios. Average daily gain and feed conversion ratio were the chosen performance criteria. These variables were combined with economic information to estimate the economic responses. In the factorial method, the Lys : NE ratio for each animal was estimated by model inversion. Optimal Lys : NE ratios estimated for growing pigs (25 to 105 kg) differed between the empirical and the factorial method. When the average pig is taken to represent a population, the factorial method does not permit estimation of the Lys : NE ratio that maximizes the response of heterogeneous populations in a given time or weight interval. Although optimal population responses are obtained by the empirical method, the estimated requirements are fixed and cannot be used for other growth periods or populations. This study demonstrates that the two methods commonly used to estimate nutrient requirements provide different nutrient recommendations and have important limitations that should be considered when the goal is to optimize the response of individuals or pig populations.
The aim of this study was to determine the effects of restricted feeding before puberty on reproduction, lactation and offspring growth performance in replacement ewe lambs over two breeding seasons. At weaning, 41 Dorset ewe lambs were assigned to one of three diets: an ad libitum control diet with medium-quality forage (MQF; 13.3% crude protein (CP), 1.81 Mcal metabolizable energy per kg, 42.8% ADF; diet A-MQF); a restricted diet with the same forage as A but less feed concentrate (diet R-MQF); or a high-quality forage (HQF) diet (14.8% CP, 2.15 Mcal ME/kg, 34.7% ADF; diet F-HQF). The quantity of concentrate offered to the group R-MQF and F-HQF ewe lambs was adjusted to obtain 70% of the control ewe lambs’ growth rate. The diets were offered for 75 days following weaning to cover the allometric phase of mammary gland development. Prepubertal restriction did not affect (P > 0.10) the gestation rate, number of lambs born or the body weight and body condition score of ewes at lambing or at the end of lactation. Ewes from groups R-MQF and F-HQF tended to produce more milk during their first lactation compared to those from group A-MQF (P = 0.07). During the second lactation, groups R-MQF and F-HQF had better standardized milk production than group A-MQF (P < 0.05), and group R-MQF produced more milk than group F-HQF (P < 0.05). Milk fat and protein content were not affected by treatments (P > 0.10) Fat and protein yield were affected by treatments only at the second lactation (P < 0.10 and P < 0.05, respectively). Lamb birth and weaning weights were not affected by prepubertal restriction of feeding in their mother (P > 0.10). However, the average daily gain of second breeding season lambs was higher for the R-MQF group than the F-HQF group (P < 0.05), and a similar trend was observed for total gain (P < 0.10). Restricted feeding before puberty does not impair future reproductive performance; however, it has a positive impact on lactation and on lambs’ growth performance.
The loss of phosphates from dairy farms contributes to the eutrophication of waterways. Whilst reducing the phosphorus (P) content of dairy cow diets has the potential to help reduce phosphate losses, diets containing inadequate dietary P may have a negative effect on cow health and performance. To address this issue, 100 winter-calving Holstein-Friesian dairy cows were offered diets containing either ‘high’ or ‘low’ levels of dietary P. The experiment was conducted over a 4-year period, with 80 primiparous cows commencing the study in year 1, while a further 20 primiparous cows commenced the study in year 2. Rations offered during the winter comprised grass silage, maize silage (70 : 30 dry matter (DM) basis, approximately) and concentrates (10.0 to 12.0 kg/cow per day). During the summer periods in years 1 and 2, half of the cows grazed both day and night, while the remaining cows grazed by day, and were housed by night and offered grass silage. During years 3 and 4, all cows grazed both day and night during the summer period. Concentrate feed levels during the summer periods were 3.0 to 4.0 kg/cow per day. Different dietary P levels were achieved by offering concentrates containing either high or low P levels during the winter period (approximately 7.0 or 4.4 g P/kg DM respectively), and during the summer period (approximately 6.8 or 3.6 g P/kg DM, respectively). Total ration P levels averaged 4.9 and 3.6 g P/kg DM for the ‘high’ and ‘low’ P winter diets respectively, and 4.2 and 3.6 g P/kg DM for the ‘high’ and ‘low’ P summer diets respectively. A total of 95, 70, 50 and 22 cows completed each of lactations 1 to 4 respectively. Dietary P level had no significant effect on food intake, milk output or milk composition (P > 0.05). Plasma P concentrations were significantly lower with cows offered the ‘low’ P diet in each of lactations 1 to 4 (P < 0.05). In each of lactations 3 and 4, cows offered the ‘low’ P diet tended to have lower condition scores and live weights than those offered the ‘high’ P diet. The results of this experiment highlight that the P content of dairy cow diets can be substantially reduced with no detrimental effect on dairy cow performance.
When methionine (Met) is limiting in swine diets, it is commonly supplemented by using anhydrous dl-methionine (DLM, 99% purity) or liquid dl-methionine-hydroxy analogue free acid (MHA-FA, 88% purity). The objective of this experiment was to test the null hypothesis that the bioavailability of DLM and MHA-FA were not different for growing pigs, using the indicator amino acid (AA) (phenylalanine, Phe) oxidation (IAAO) method in a slope-ratio assay. Six barrows (mean BW during study: 21.1 kg) received seven dietary treatments with all pigs receiving all diets in random order at an intake of 95 g/kg BW0.75. The basal diet (BD) contained analyzed content of 15.1% CP, 0.20% Met, 0.73% Phe and all other AA in excess of requirement. The BD was supplemented with three graded levels of DLM or MHA-FA on an equimolar basis. Dietary treatments only varied in Met content and included: (i) BD, (ii) BD + 0.034% DLM, (iii) BD + 0.054% DLM, (iv) BD + 0.086% DLM, (v) BD + 0.029% MHA-FA, (vi) BD + 0.078% MHA-FA and (vii) BD + 0.107% MHA-FA, as analyzed. Indicator AA oxidation was determined during 4 h studies, where pigs were fed half-hourly meals each equal to 1/32 of their daily feed allowance. Each meal was mixed with 258.7 kBq (s.e. 2.6) of l-[1-14C]Phe with a prime of 3.5 times the half-hourly dose added to the first meal. The slope of the decrease in IAAO calculated by linear regression analysis was greater (P = 0.012) for DLM supplementation (9.87 ± 1.450 per g, 1.488 ± 0.215% per mmol) than for MHA-FA (6.48 ± 0.89 per g, 1.107 ± 0.152% per mmol). The ratio of slopes indicated a bioavailability of MHA-FA on a product basis, relative to DLM, of 65.7%. Bioavailability on an equimolar Met basis, calculated from the ratio of the slopes was 74.4% for MHA-FA, relative to DLM. In conclusion, these results indicate that the metabolic bioavailability of MHA-FA for growing pigs is appreciably lower than that of DLM on both an equimolar and a product basis.
International Conference Livestock and Global Climate Change, Hammamet, Tunisia, May 2008
There is a great potential to reduce greenhouse gas (GHG) emissions related to livestock production. For achieving this potential will require new initiatives at national and international levels that include promoting research and development on new mitigation technologies; deploying, diffusing and transferring technologies to mitigate emissions; and enhancing capacities to monitor, report and verify emissions from livestock production. This study describes the sources of livestock-related GHG emissions and reviews available mitigation technologies and practices. We assess the main policy instruments available to curb emissions and promote carbon sinks, and discuss the relative merits of alternative approaches. We discuss recent experiences in countries that have enacted mitigation strategies for the livestock sector to illustrate some of the key issues and constraints in policy implementation. Finally, we explore the main issues and challenges surrounding international efforts to mitigate GHG emissions and discuss some possible ways to address these challenges in future climate agreements.