To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Heat shock proteins (HSPs) consist of highly preserved stress proteins that are expressed in response to stress. Two studies were carried out to investigate whether HSP genes in hair follicles from beef calves can be suggested as indicators of heat stress (HS). In study 1, hair follicles were harvested from three male Hanwoo calves (aged 172.2 ± 7.20 days) on six dates over the period of 10 April to 9 August 2017. These days provided varying temperature–humidity indices (THIs). In study 2, 16 Hanwoo male calves (aged 169.6 ± 4.60 days, with a BW of 136.9 ± 6.23 kg) were maintained (4 calves per experiment) in environmentally controlled chambers. A completely randomized design with a 2 × 4 factorial arrangement involving two periods (thermoneutral: TN; HS) and four THI treatment groups (threshold: THI = 68 to 70; mild: THI = 74 to 76; moderate THI = 81 to 83; severe: THI = 88 to 90). The calves in the different group were subjected to ambient temperature (22°C) for 7 days (TN) and subsequently to the temperature and humidity corresponding to the target THI level for 21 days (HS). Every three days (at 1400 h) during both the TN and HS periods, the heart rate (HR) and rectal temperature (RT) of each individual were measured, and hair follicles were subsequently collected from the tails of each individual. In study 1, the high variation (P < 0.0001) in THI indicated that the external environment influenced the HS to different extents. The expression levels of the HSP70 and HSP90 genes at the high-THI level were higher (P = 0.0120, P = 0.0002) than those at the low-THI level. In study 2, no differences in the THI (P = 0.2638), HR (P = 0.2181) or RT (P = 0.3846) were found among the groups during the TN period, whereas differences in these indices (P < 0.0001, P < 0.0001 and P < 0.0001, respectively) were observed during the HS period. The expression levels of the HSP70 (P = 0.0010, moderate; P = 0.0065, severe) and HSP90 (P = 0.0040, severe) genes were increased after rapid exposure to heat-stress conditions (moderate and severe levels). We conclude that HSP gene expression in hair follicles provides precise and accurate data for evaluating HS and can be considered a novel indicator of HS in Hanwoo calves maintained in both external and climatic chambers.
The average productive lifespan is approximately 3 to 4 years in countries with high-producing dairy cows. This is much shorter than the natural life expectancy of dairy cattle. Dairy farmers continue to cull cows primarily for reasons related to poor health, failure to conceive or conformation problems prior to culling. These reasons may indicate reduced welfare leading up to culling. Improvements in health care, housing and nutrition will reduce forced culling related to these welfare reasons. However, productive lifespan has remained similar in decades, despite large improvements in cow comfort and genetic selection for the ability to avoid culling. On the other hand, genetic progress for economically important traits is accelerating within the last decade, which should slightly shorten the average economically optimal productive lifespan. A major driver of productive lifespan is the availability of replacement heifers that force cows out when they calve. The average productive lifespan could be extended by reducing the supply of dairy heifers, which would also have benefits for environmental sustainability. Improvements in culling decision support tools would strengthen economically optimal replacement decisions. In conclusion, major factors of the relatively short productive lifespan of dairy cows are welfare-related, but other economic factors like supply of heifers, genetic progress and non-optimal decision-making also play important roles.
Feed intake is controlled through a combination of long- and short-term mechanisms. Homeorhetic mechanisms allow adaptation to changes in physiological states in the long term, whereas homeostatic mechanisms are important to maintain physiological equilibrium in the short term. Feed intake is a function of meal size and meal frequency that are controlled by short-term mechanisms over the timeframe of minutes that are modulated by homeorhetic signals to adapt to changes in the physiological state. Control of feed intake by hepatic oxidation likely integrates these mechanisms. Signals from the liver are transmitted to brain feeding centers via vagal afferents and are affected by the hepatic oxidation of fuels. Because fuels oxidized in the liver are derived from both the diet and tissues, the liver is able to integrate long- and short-term controls. Whereas multiple signals are integrated in brain feeding centers to ultimately determine feeding behavior, the liver is likely a primary sensor of energy status.
Aspects of neutrophil function are diminished or dysregulated in dairy cows in the weeks just before and after calving, which appears to be an important contributor to the occurrence of retained placenta, mastitis, metritis and endometritis. The timing and mechanisms by which specific elements of neutrophil function are impaired are only partially understood. Oxidative burst capacity is the element of neutrophil function most consistently shown to be impaired in the week after calving, but that observation may partially be biased because oxidative burst has been studied more than other functions. There is sufficient evidence to conclude that the availability of calcium and glucose, and exposure to elevated concentrations of non-esterified fatty acids or β-hydroxybutyrate affect some aspects of neutrophil function. However, these factors have mostly been studied in isolation and their effects are not consistent. Social stressors such as a competitive environment for feeding or lying space should plausibly impair innate immune function, but when studied under controlled conditions such effects have generally not been produced. Similarly, treatment with recombinant bovine granulocyte colony-stimulating factor consistently produces large increases in circulating neutrophil count with modest improvements in function, but this does not consistently reduce the incidence of clinical diseases thought to be importantly attributable to impaired innate immunity. Research is now needed that considers the interactions among known and putative risk factors for impaired neutrophil function in dairy cows in the transition period.
Pregastric fermentation along with production practices that are dependent on high-energy diets means ruminants rely heavily on starch and protein assimilation for a substantial portion of their nutrient needs. While the majority of dietary starch may be fermented in the rumen, significant portions can flow to the small intestine. The initial phase of small intestinal digestion requires pancreatic α-amylase. Numerous nutritional factors have been shown to influence pancreatic α-amylase secretion with starch producing negative effects and casein, certain amino acids and dietary energy having positive effects. To date, manipulation of α-amylase secretion has not resulted in substantial changes in digestibility. The second phase of digestion involves the actions of the brush border enzymes sucrase-isomaltase and maltase-glucoamylase. Genetically, ruminants appear to possess these enzymes; however, the absence of measurable sucrase activity and limited adaptation with changes in diet suggests a reduced capacity for this phase of digestion. The final phase of carbohydrate assimilation is glucose transport. Ruminants possess Na+-dependent glucose transport that has been shown to be inducible. Because of the nature of pregastric fermentation, ruminants see a near constant flow of microbial protein to the small intestine. This results in a nutrient supply, which places a high priority on protein digestion and utilization. Comparatively, little research has been conducted describing protein assimilation. Enzymes and processes appear consistent with non-ruminants and are likely not limiting for efficient digestion of most feedstuffs. The mechanisms regulating the nutritional modulation of digestive function in the small intestine are complex and coordinated via the substrate, neural and hormonal effects in the small intestine, pancreas, peripheral tissues and the pituitary—hypothalamic axis. More research is needed in ruminants to help unravel the complexities by which small intestinal digestion is regulated with the aim of developing approaches to enhance and improve the efficiency of small intestinal digestion.
Making dairy farming more cost-effective and reducing nitrogen environmental pollution could be reached through a reduced input of dietary protein, provided productivity is not compromised. This could be achieved through balancing dairy rations for essential amino acids (EAA) rather than their aggregate, the metabolizable protein (MP). This review revisits the estimations of the major true protein secretions in dairy cows, milk protein yield (MPY), metabolic fecal protein (MFP), endogenous urinary loss and scurf and associated AA composition. The combined efficiency with which MP (EffMP) or EAA (EffAA) is used to support protein secretions is calculated as the sum of true protein secretions (MPY + MFP + scurf) divided by the net supply (adjusted to remove the endogenous urinary excretion: MPadj and AAadj). Using the proposed protein and AA secretions, EffMP and EffAA were predicted through meta-analyses (807 treatment means) and validated using an independent database (129 treatment means). The effects of MPadj or AAadj, plus digestible energy intake (DEI), days in milk (DIM) and parity (primiparous v. multiparous), were significant in all models. Models using (MPadj, MPadj × MPadj, DEI and DEI × DEI) or (MPadj/DEI and MPadj/DEI × MPadj/DEI) had similar corrected Akaike’s information criterion, but the model using MPadj/DEI performed better in the validation database. A model that also included this ratio was, therefore, used to fitting equations to predict EffAA. These equations predicted well EffAA in the validation database except for Arg which had a strong slope bias. Predictions of MPY from predicted EffMP based on MPadj/DEI, MPadj/DEI × MPadj/DEI, DIM and parity yielded a better fit than direct predictions of MPY based on MPadj, MPadj × MPadj, DEI, DIM and parity. Predictions of MPY based on each EffAA yielded fairly similar results among AA. It is proposed to ponder the mean of MPY predictions obtained from each EffAA by the lowest prediction to retain the potential limitation from AA with the shortest supply. Overall, the revisited estimations of endogenous urinary excretion and MFP, revised AA composition of protein secretions and inclusion of a variable combined EffAA (based on AAadj/DEI, AAadj/DEI × Aadj/DEI, DIM and parity) offer the potential to improve predictions of MPY, identify which AA are potentially in short supply and, therefore, improve the AA balance of dairy rations.
Feeding management of the postnatal and preweaning calf has an important impact on calf growth and development during this critical period and affects the health and well-being of the calves. After birth, an immediate and sufficient colostrum supply is a prerequisite for successful calf rearing. Colostrum provides high amounts of nutrient as well as non-nutrient factors that promote the immune system and intestinal maturation of the calf. The maturation and function of the neonatal intestine enable the calf to digest and absorb the nutrients provided by colostrum and milk. Therefore, colostrum intake supports the start of anabolic processes in several tissues, stimulating postnatal body growth and organ development. After the colostrum feeding period, an intensive milk feeding protocol, that is, at least 20% of BW milk intake/day, is required to realise the calf potential for growth and organ development during the preweaning period. Insufficient milk intake delays postnatal growth and may have detrimental effects on organ development, for example, the intestine and the mammary gland. The somatotropic axis as the main postnatal endocrine regulatory system for body growth is stimulated by the intake of high amounts of colostrum and milk and indicates the promotion of anabolic metabolism in calves. The development of the forestomach is an important issue during the preweaning period in calves, and forestomach maturation is best achieved by solid feed intake. Unfortunately, intensive milk-feeding programmes compromise solid feed intake during the first weeks of life. In the more natural situation for beef calves, when milk and solid feed intake occurs at the same time, calves benefit from the high milk intake as evidenced by enhanced body growth and organ maturation without impaired forestomach development during weaning. To realise an intensive milk-feeding programme, it is recommended that the weaning process should not start too early and that solid feed intake should be at a high extent despite intensive milk feeding. A feeding concept based on intensive milk feeding prevents hunger and abnormal behaviour of the calves and fits the principles of animal welfare during preweaning calf rearing. Studies on milk performance in dairy cows indicate that feeding management during early calf rearing influences lifetime performance. Therefore, an intensive milk-feeding programme affects immediate as well as long-term performance, probably by programming metabolic pathways during the preweaning period.
The so-called global change refers to changes on a planetary scale. The term encompasses various issues like resource use, energy development, population growth, land use and land cover, carbon and nitrogen cycle, pollution and health, and climate change. The paper deals with challenges for dairy cattle production systems in Europe arising from climate change as one part of global changes. Global warming is increasing, and therefore ecosystems, plant and animal biodiversity, and food security and safety are at risk. It is already accepted knowledge that the direct and indirect effects of global warming in combination with an increasing frequency of weather extremes are a serious issue for livestock production, even in moderate climate zones like Central Europe. The potential and already-measurable effects of climate change (including increase in temperature, frequency of hot days and heat waves), in particular the challenges on grassland production, fodder quality, nutrition in general, cow welfare, health as well as performance of dairy production, will be reviewed. Indirect and direct effects on animals are correlated with their performance. There are clear indications that with selection for high-yielding animals the sensitivity to climate changes increases. Cumulative effects (e.g. higher temperature plus increased pathogen and their vectors loads) do strengthen these impacts. To cope with the consequences several possible adaptation and mitigation strategies must be established on different levels. This includes changes in the production systems (e.g. management, barn, feeding), breeding strategies and health management.
Assisted reproduction techniques (ARTs) provide access to early stage embryos whose analysis and assessment deliver valuable information. The handling of embryos, including the in vitro production of bovine embryos, is a rapidly evolving area which nonetheless exposes the embryos to unnatural conditions for a period of time. The Fallopian tube provides innumerable quantitative and qualitative factors, all of which guarantee the successful development of the embryo. It is well known that the Fallopian tube can be bypassed, using embryo transfer, resulting in successful implantation in the target recipient animal and the birth of calves. However, the question arises as to whether such circumvention has a negative impact on the embryo during this sensitive development period. First crosstalk between the embryo and its environment confirms mutual recognition activities and indicate bilateral effects. Nowadays, in vitro production of bovine embryos is a well-established technology. However, it is still evident that in vitro generated embryos are not qualitatively comparable to embryos obtained ex vivo. To counteract these differences, comparative studies between in vitro and ex vivo embryos are advantageous, as embryos grown in their physiological environment can provide a blueprint or gold standard against which to compare embryos produced in vitro. Attempts to harness the bovine oviduct were sometimes very invasive and did not result in wide acceptance and routine use. Long-term development and refinement of transvaginal endoscopy for accessing the bovine oviduct has meanwhile been routinely applied for research as well as in practice. Comparative studies combining in vitro development with development in the cattle oviduct revealed that the environmental conditions to which the embryo is exposed before activation of the embryonic genome can have detrimental and lasting effects on its further development. These effects are manifested as deviations in gene expression profiles and methylation signatures as well as frequency of whole chromosomal or segmental aberrations. Furthermore, it was shown that hormonal superstimulation (multiple ovulation and embryo transfer), varying progesterone concentrations as well as metabolic disorders caused by high milk production, markedly affected embryo development in the postpartum period. Assisted reproductive techniques that allow the production and handling of extra numbers of generated embryos promise to have a very high impact on scientific and practical application. Any influence on the early embryonic life, both in animals and in vitro, is accompanied by a sensitive change in embryonic activity and should be assessed in vivo on the basis of physiological conditions before being used for ART.
Reproductive traits have a major influence on the economic effectiveness of horse breeding. However, there is little information available. We evaluated the use of reproductive traits as selection criteria in official breeding programs to increase the reproductive efficiency of breeding studs, analysing 696 690 records from the pedigree data of eight Spanish horse populations, with different breeding purposes. The reproductive parameters studied in both sexes were age at first foaling (AFF), age at last foaling, average reproductive life and generational interval. In the females, the average interval between foaling (AIF) and interval between first and second foaling were also studied. There were clear differences between sexes and breeds, which may be due to management practices, breeding purposes and the status of the populations, rather than to differences in actual physiological conditions. Riding mares were the most precocious (AFF, 1937.64 to 2255.69 days) and had a more intensive reproductive use (AIF, 625.83 to 760.07 days), whereas sires used for meat production were the most precocious males (AFF, 1789.93 to 1999.75 days), although they had a shorter reproductive life (1564.34 to 1797.32 days). Heritabilities (0.02 to 0.42 in females and 0.04 to 0.28 in males) evidenced the genetic component of the reproductive traits, with Sport Horses having the higher average values. These results support the selection by AFF to improve reproductive aspects because of its medium–high heritability and its positive correlations with other important reproductive traits. The inclusion of the AIF is also recommended in sport populations, because this determines the length of the breaks between foaling and conditions the reproductive performance of the dams, as well as their selective intensity, genetic gain and genetic improvement. It is therefore an important economic parameter in breeding studs.
Meat and milk from ruminants provide an important source of protein and other nutrients for human consumption. Although ruminants have a unique advantage of being able to consume forages and graze lands not suitable for arable cropping, 2% to 12% of the gross energy consumed is converted to enteric CH4 during ruminal digestion, which contributes approximately 6% of global anthropogenic greenhouse gas emissions. Thus, ruminant producers need to find cost-effective ways to reduce emissions while meeting consumer demand for food. This paper provides a critical review of the substantial amount of ruminant CH4-related research published in past decades, highlighting hydrogen flow in the rumen, the microbiome associated with methanogenesis, current and future prospects for CH4 mitigation and insights into future challenges for science, governments, farmers and associated industries. Methane emission intensity, measured as emissions per unit of meat and milk, has continuously declined over the past decades due to improvements in production efficiency and animal performance, and this trend is expected to continue. However, continued decline in emission intensity will likely be insufficient to offset the rising emissions from increasing demand for animal protein. Thus, decreases in both emission intensity (g CH4/animal product) and absolute emissions (g CH4/day) are needed if the ruminant industries continue to grow. Providing producers with cost-effective options for decreasing CH4 emissions is therefore imperative, yet few cost-effective approaches are currently available. Future abatement may be achieved through animal genetics, vaccine development, early life programming, diet formulation, use of alternative hydrogen sinks, chemical inhibitors and fermentation modifiers. Individually, these strategies are expected to have moderate effects (<20% decrease), with the exception of the experimental inhibitor 3-nitrooxypropanol for which decreases in CH4 have consistently been greater (20% to 40% decrease). Therefore, it will be necessary to combine strategies to attain the sizable reduction in CH4 needed, but further research is required to determine whether combining anti-methanogenic strategies will have consistent additive effects. It is also not clear whether a decrease in CH4 production leads to consistent improved animal performance, information that will be necessary for adoption by producers. Major constraints for decreasing global enteric CH4 emissions from ruminants are continued expansion of the industry, the cost of mitigation, the difficulty of applying mitigation strategies to grazing ruminants, the inconsistent effects on animal performance and the paucity of information on animal health, reproduction, product quality, cost-benefit, safety and consumer acceptance.
The rumen contains a great diversity of prokaryotic and eukaryotic microorganisms that allow the ruminant to utilize ligno-cellulose material and to convert non-protein nitrogen into microbial protein to obtain energy and amino acids. However, rumen fermentation also has potential deleterious consequences associated with the emissions of greenhouse gases, excessive nitrogen excreted in manure and may also adversely influence the nutritional value of ruminant products. While several strategies for optimizing the energy and nitrogen use by ruminants have been suggested, a better understanding of the key microorganisms involved and their activities is essential to manipulate rumen processes successfully. Diet is the most obvious factor influencing the rumen microbiome and fermentation. Among dietary interventions, the ban of antimicrobial growth promoters in animal production systems has led to an increasing interest in the use of plant extracts to manipulate the rumen. Plant extracts (e.g. saponins, polyphenol compounds, essential oils) have shown potential to decrease methane emissions and improve the efficiency of nitrogen utilization; however, there are limitations such as inconsistency, transient and adverse effects for their use as feed additives for ruminants. It has been proved that the host animal may also influence the rumen microbial population both as a heritable trait and through the effect of early-life nutrition on microbial population structure and function in adult ruminants. Recent developments have allowed phylogenetic information to be upscaled to metabolic information; however, research effort on cultivation of microorganisms for an in-depth study and characterization is needed. The introduction and integration of metagenomic, transcriptomic, proteomic and metabolomic techniques is offering the greatest potential of reaching a truly systems-level understanding of the rumen; studies have been focused on the prokaryotic population and a broader approach needs to be considered.
Coordinated changes in energy metabolism develop to support gestation and lactation in the periparturient dairy cow. Maternal physiology involves the partitioning of nutrients (i.e. glucose, amino acids and fatty acids (FA)) for fetal growth and milk synthesis. However, the inability of the dairy cow to successfully adapt to a productive lactation may trigger metabolic stress characterized by uncontrolled adipose tissue lipolysis and reduced insulin sensitivity. A consequence is lipotoxicity and hepatic triglyceride deposition that favors the development of fatty liver disease (FLD) and ketosis. This review describes contemporary perspectives pertaining to FA surfeit and complex lipid metabolism in the transition dairy cow. The role of saturated and unsaturated FA as bioactive signaling molecules capable of modulating insulin secretion and sensitivity is explored. Moreover, the metabolic fate of FA as influenced by mitochondrial function is considered. This includes the influence of inadequate mitochondrial oxidation on acylcarnitine status and the use of FA for lipid mediator synthesis. Lipid mediators, including the sphingolipid ceramide and diacylglycerol, are evaluated considering their established ability to inhibit insulin signaling and glucose transport in non-ruminant diabetics. The mechanisms of FLD in the transition cow are revisited with attention centered on glycerophospholipid phosphatidylcholine and triglyceride secretion. The relationship between oxidative stress and oxylipids within the context of insulin antagonism, hepatic steatosis and inflammation is also reviewed. Lastly, peripartal hormonal involvement or lack thereof of adipokines (i.e. leptin, adiponectin) and hepatokines (i.e. fibroblast growth factor-21) is described. Similarities and differences in ruminant and non-ruminant physiology are routinely showcased. Unraveling the lipidome of the dairy cow has generated breakthroughs in our understanding of periparturient lipid biology. Therapeutic approaches that target FA and complex lipid metabolism holds promise to enhance cow health, well-being and productive lifespan.
In this position paper, I shall summarise the current status of sensor technologies in ruminant livestock farming with emphasis on dairy cattle, outline the case for why I believe that sensor technologies could revolutionise global dairy farming in a positive way, describe the significant barriers that exist if that goal is to be achieved and highlight the benefits to animal wellbeing, profitability and sustainability that could result if the technologies are implemented to a significant extent. I shall not provide a comprehensive review of the sensor technology literature since that has been done before, but I intend to provide a sensible amount of background information and data that will allow the reader to obtain a picture not only of today’s sensor usage but, more importantly, the possible future direction of dairy animal-oriented sensor technologies, and I shall substantiate my claims and conclusions with relevant literature.
In comparison to monogastric animals, ruminants show some peculiarities in respect to the regulation of mineral homeostasis, which can be regarded as a concerted interplay between gastrointestinal absorption, renal excretion and bone mobilisation to maintain physiological Ca and phosphate (Pi) concentrations in serum. Intestinal absorption of Ca or Pi is mediated by two general mechanisms: paracellular, passive transport dominates when luminal Ca or Pi concentrations are high and transcellular. The contribution of active transport becomes more important when dietary Ca or Pi supply is restricted or the demand increased. Both pathways are modulated directly by dietary interventions, influenced by age and regulated by endocrine factors such as 1,25-dihydroxyvitamin D3. Similar transport processes are observed in the kidney. After filtration, Ca and Pi are resorbed along the nephron. However, as urinary Ca and Pi excretion is very low in ruminants, the regulation of these renal pathways differs from that described for monogastric species, too. Furthermore, salivary secretion, as part of endogenous Pi recycling, and bone mobilisation participate in the maintenance of Ca and Pi homeostasis in ruminants. Saliva contains large amounts of Pi for buffering rumen pH and to ensure optimal conditions for the rumen microbiome. The skeleton is a major reservoir of Ca and Pi to compensate for discrepancies between demand and uptake. But alterations of the regulation of mineral homeostasis induced by other dietary factors such as a low protein diet were observed in growing ruminants. In addition, metabolic changes, for example, at the onset of lactation have pronounced effects on gastrointestinal mineral transport processes in some ruminant species. As disturbances of mineral homeostasis do not only increase the risk of the animals to develop other diseases, but are also associated with protein and energy metabolism, further research is needed to improve our knowledge of its complex regulation.
Improvements in feed intake of dairy cows entering the early lactation period potentially decrease the risk of metabolic disorders, but before developing approaches targeting the intake level, mechanisms controlling and dysregulating energy balance and feed intake need to be understood. This review focuses on different inflammatory pathways interfering with the neuroendocrine system regulating feed intake of periparturient dairy cows. Subacute inflammation in various peripheral organs often occurs shortly before or after calving and is associated with increased pro-inflammatory cytokine levels. These cytokines are released into the circulation and sensed by neurons located in the hypothalamus, the key brain region regulating energy balance, to signal reduction in feed intake. Besides these peripheral humoral signals, glia cells in the brain may produce pro-inflammatory cytokines independent of peripheral inflammation. Preliminary results show intensive microglia activation in early lactation, suggesting their involvement in hypothalamic inflammation and the control of feed intake of dairy cows. On the other hand, pro-inflammatory cytokine-induced activation of the vagus nerve transmits signalling to the brain, but this pathway seems not exclusively necessary to signal feed intake reduction. Yet, less studied in dairy cows so far, the endocannabinoid system links inflammation and the hypothalamic control of feed intake. Distinct endocannabinoids exert anti-inflammatory action but also stimulate the posttranslational cleavage of neuronal proopiomelanocortin towards β-endorphin, an orexigen promoting feed intake. Plasma endocannabinoid concentrations and hypothalamic β-endorphin levels increase from late pregnancy to early lactation, but less is known about the regulation of the hypothalamic endocannabinoid system during the periparturient period of dairy cows. Dietary fatty acids may modulate the formation of endocannabinoids, which opens new avenues to improve metabolic health and immune status of dairy cows.
Inflammatory cascades are a critical component of the immune response to infection or tissue damage, involving an array of signals, including water-soluble metabolites, lipid mediators and several classes of proteins. Early investigation of these signaling pathways focused largely on immune cells and acute disease models. However, more recent findings have highlighted critical roles of both immune cells and inflammatory mediators on tissue remodeling and metabolic homeostasis in healthy animals. In dairy cattle, inflammatory signals in various tissues and in circulation change rapidly and dramatically, starting just prior to and at the onset of lactation. Furthermore, several observations in healthy cows point to homeostatic control of inflammatory tone, which we define as a regulatory process to balance immune tolerance with activation to keep downstream effects under control. Recent evidence suggests that peripartum inflammatory changes influence whole-body nutrient flux of dairy cows over the course of days and months. Inflammatory mediators can suppress appetite, even at levels that do not induce acute responses (e.g. fever), thereby decreasing nutrient availability. On the other hand, inhibition of inflammatory signaling with non-steroidal anti-inflammatory drug (NSAID) treatment suppresses hepatic gluconeogenesis, leading to hypoglycemia in some cases. Over the long term, though, peripartum NSAID treatment substantially increases peak and whole-lactation milk synthesis by multiparous cows. Inflammatory regulation of nutrient flux may provide a homeorhetic mechanism to aid cows in adapting to rapid changes in metabolic demand at the onset of lactation, but excessive systemic inflammation has negative effects on metabolic homeostasis through inhibition of appetite and promotion of immune cell activity. Thus, in this review, we provide perspectives on the overlapping regulation of immune responses and metabolism by inflammatory mediators, which may provide a mechanistic underpinning for links between infectious and metabolic diseases in transition dairy cows. Moreover, we point to novel approaches to the management of this challenging phase of the production cycle.
Rumen sensors provide specific information to help understand rumen functioning in relation to health disorders and to assist in decision-making for farm management. This review focuses on the use of rumen sensors to measure ruminal pH and discusses variation in pH in both time and location, pH-associated disorders and data analysis methods to summarize and interpret rumen pH data. Discussion on the use of rumen sensors to measure redox potential as an indication of the fermentation processes is also included. Acids may accumulate and reduce ruminal pH if acid removal from the rumen and rumen buffering cannot keep pace with their production. The complexity of the factors involved, combined with the interactions between the rumen and the host that ultimately determine ruminal pH, results in large variation among animals in their pH response to dietary or other changes. Although ruminal pH and pH dynamics only partially explain the typical symptoms of acidosis, it remains a main indicator and may assist to optimize rumen function. Rumen pH sensors allow continuous monitoring of pH and of diurnal variation in pH in individual animals. Substantial drift of non-retrievable rumen pH sensors, and the difficulty to calibrate these sensors, limits their application. Significant within-day variation in ruminal pH is frequently observed, and large distinct differences in pH between locations in the rumen occur. The magnitude of pH differences between locations appears to be diet dependent. Universal application of fixed conversion factors to correct for absolute pH differences between locations should be avoided. Rumen sensors provide high-resolution kinetics of pH and a vast amount of data. Commonly reported pH characteristics include mean and minimum pH, but these do not properly reflect severity of pH depression. The area under the pH × time curve integrates both duration and extent of pH depression. The use of this characteristic, as well as summarizing parameters obtained from fitting equations to cumulative pH data, is recommended to identify pH variation in relation to acidosis. Some rumen sensors can also measure the redox potential. This measurement helps to understand rumen functioning, as the redox potential of rumen fluid directly reflects the microbial intracellular redox balance status and impacts fermentative activity of rumen microorganisms. Taken together, proper assessment and interpretation of data generated by rumen sensors requires consideration of their limitations under various conditions.