Hostname: page-component-5b777bbd6c-j65dx Total loading time: 0 Render date: 2025-06-20T07:50:45.165Z Has data issue: false hasContentIssue false

Limit laws for the generalized Zagreb indices of random graphs

Published online by Cambridge University Press:  26 May 2025

Qunqiang Feng*
Affiliation:
University of Science and Technology of China
Hongpeng Ren*
Affiliation:
University of Science and Technology of China
Yaru Tian*
Affiliation:
University of Science and Technology of China
*
*Postal address: Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China.
*Postal address: Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China.
*Postal address: Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China.

Abstract

In this paper, we study the asymptotic behavior of the generalized Zagreb indices of the classical Erdős–Rényi (ER) random graph G(n, p), as $n\to\infty$. For any integer $k\ge1$, we first give an expression for the kth-order generalized Zagreb index in terms of the number of star graphs of various sizes in any simple graph. The explicit formulas for the first two moments of the generalized Zagreb indices of an ER random graph are then obtained from this expression. Based on the asymptotic normality of the numbers of star graphs of various sizes, several joint limit laws are established for a finite number of generalized Zagreb indices with a phase transition for p in different regimes. Finally, we provide a necessary and sufficient condition for any single generalized Zagreb index of G(n, p) to be asymptotic normal.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ali, A., Gutman, I., Milovanović, E., and Milovanović, I. (2018). Sum of powers of the degrees of graphs: extremal results and bounds. MATCH Commun. Math. Comput. Chem. 80, 584.Google Scholar
Bedratyuk, L. and Savenko, O. (2018). The star sequence and the general first Zagrebindex. MATCH Commun. Math. Comput. Chem. 79, 407414.Google Scholar
Bhattacharya, B., Chatterjee, A. and Janson, S. (2023). Fluctuations of subgraph counts in graphon based random graphs. Comb. Probab. Comput. 32, 428464.10.1017/S0963548322000335CrossRefGoogle Scholar
Björklund, J., Holmgren, C., Janson, S. and Lo, T. Y. Y. (2025). Approximation of subgraph counts in the uniform attachment model. Comb. Probab. Comput. 34, 90114.10.1017/S0963548324000294CrossRefGoogle Scholar
Bollobás, B. (2001). Random Graphs, 2nd edn. Cambridge University Press, Cambridge.10.1017/CBO9780511814068CrossRefGoogle Scholar
Cheng, S., Wu, B. (2024) The first general Zagreb index of graphs and their line graphs. J. Appl. Math. Comput. 70, 19371951.10.1007/s12190-024-02036-0CrossRefGoogle Scholar
Cioabă, S. M. (2006). Sums of powers of the degrees of a graph. Discrete Math. 306, 19591964.10.1016/j.disc.2006.03.054CrossRefGoogle Scholar
Das, K. C., Xu, K. and Nam, J. (2015). Zagreb indices of graphs. Front. Math. China 10, 567582.10.1007/s11464-015-0431-9CrossRefGoogle Scholar
De Jong, P. (2016). A central limit theorem with applications to random hypergraphs. Random Struct. Algor. 8, 105120.10.1002/(SICI)1098-2418(199603)8:2<105::AID-RSA2>3.0.CO;2-13.0.CO;2-1>CrossRefGoogle Scholar
Devillers, J. and Balaban, A. T. (Eds.). (1999). Topological Indices and Related Descriptors in QSAR and QSPR. CRC Press, London.Google Scholar
Diudea, M. V. (2001). QSPR/QSAR Studies by Molecular Descriptors. Nova, New York.Google Scholar
Došlić, T., Hosseinzadeh, M. A., Hossein-Zadeh, S., Iranmanesh, A. and Rezakhanlou, F. (2020). On generalized Zagreb indices of random graphs. MATCH Commun. Math. Comput. Chem. 84, 499511.Google Scholar
Eichelsbacher, P. and Rednoss, B. (2023). Kolmogorov bounds for decomposable random variables and subgraph counting by the Stein-Tikhomirov method. Bernoulli 29, 18211848.10.3150/22-BEJ1522CrossRefGoogle Scholar
Estrada, E. (2022). Statistical–mechanical theory of topological indices. Physica A 602, 127612.10.1016/j.physa.2022.127612CrossRefGoogle Scholar
Feng, Q., Hu, Z. and Su, C. (2013). The Zagreb indices of random graphs. Probab. Eng. Inf. Sci. 27, 247260.10.1017/S0269964812000447CrossRefGoogle Scholar
Furtul, B. and Gutman, I. (2015). A forgotten topological index. J. Math. Chem. 53, 11841190.10.1007/s10910-015-0480-zCrossRefGoogle Scholar
Gutman, I. (2013). Degree-based topological indices. Croat. Chem. Acta 86, 351361.10.5562/cca2294CrossRefGoogle Scholar
Gutman, I. (2014). An exceptional property of the first Zagreb index. MATCH Commun. Math. Comput. Chem. 72, 733740.Google Scholar
Gutman, I. and Das, K.C. (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 8392.Google Scholar
Gutman, I., Milovanović, E. and Milovanović, I. (2020). Beyond the Zagreb indices. AKCE Int. J. Graphs Co. 17, 7485.10.1016/j.akcej.2018.05.002CrossRefGoogle Scholar
Gutman, I. and Trinajstić, N. (1972). Graph theory and molecular orbitals. Total $\varphi$ -electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535538.10.1016/0009-2614(72)85099-1CrossRefGoogle Scholar
Horoldagva, B. and Das, K. C. (2021). On Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem. 85, 295301.Google Scholar
Jahanbani, A. (2021). On the forgotten topological index of graphs. Discret. Math. Algorit. 13, 2150054.10.1142/S1793830921500543CrossRefGoogle Scholar
Janson, S., Łuczak, T. and Ruciński, A. (2000). Random Graphs. John Wiley, New York.10.1002/9781118032718CrossRefGoogle Scholar
Janson, S. and Nowicki, K. (1991). The asymptotic distributions of generalized U-statistics with applications to random graphs. Probab. Theory Rel. 90, 341375.10.1007/BF01193750CrossRefGoogle Scholar
Kaur, G. and Röllin, A. (2021). Higher-order fluctuations in dense random graph models. Electron. J. Probab. 25, 136.Google Scholar
Krokowski, K. and Thäle, C. (2017). Multivariate central limit theorems for Rademacher functionals with applications. Electron. J. Probab. 22, 130.10.1214/17-EJP106CrossRefGoogle Scholar
Li, X. and Zhao, H. (2004). Trees with the first three smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem. 50, 5762.Google Scholar
Li, X. and Zheng, J. (2005). A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem. 54, 195208.Google Scholar
Liu, Q. and Privault, N. (2024). Normal to Poisson phase transition for subgraph counting in the random-connection model. Preprint arXiv: 2409.16222v1.Google Scholar
Michalczuk, W., Nieradko, M. and Serafin, G. (2024). Normal approximation for subgraph count in random hypergraphs. Preprint arXiv: 2408.06112v1.Google Scholar
Penrose, M. (2018). Inhomogeneous random graphs, isolated vertices, and Poisson approximation. J. Appl. Probab. 55, 112136.10.1017/jpr.2018.9CrossRefGoogle Scholar
Privault, N. and Serafin, G. (2020). Normal approximation for sums of weighted U-statistics—application to Kolmogorov bounds in random subgraph counting. Bernoulli 26, 587615.10.3150/19-BEJ1141CrossRefGoogle Scholar
Reinert, G. and Röllin, A. (2010). Random subgraph counts and U-statistics: multivariate normal approximation via exchangeable pairs and embedding. J. Appl. Probab. 47, 378393 10.1239/jap/1276784898CrossRefGoogle Scholar
Röllin, A. (2022). Kolmogorov bounds for the normal approximation of the number of triangles in the Erdös-Rényi random graph. Probab. Eng. Inf. Sci. 36, 747773.10.1017/S0269964821000061CrossRefGoogle Scholar
Ruciński, A. (1988). When are small subgraphs of a random graph normally distributed? Probab. Theory Rel. 78, 110.10.1007/BF00718031CrossRefGoogle Scholar
Sedghi, S., Shobe, N. and Salahshoor, M. A. (2008). The polynomials of a graph. Iran. J. Math. Sci. Info. 3, 5568.Google Scholar
Tutte, W. T. (2005). Graph Theory. Cambridge University Press, Cambridge.Google Scholar
Van der Hofstad, R. (2016). Random Graphs and Complex Networks. Cambridge University Press, Cambridge.10.1017/9781316779422CrossRefGoogle Scholar
Wang, H. and Yuan, S. (2016). On the sum of squares of degrees and products of adjacent degrees. Discrete Math. 339, 12121220.10.1016/j.disc.2015.11.013CrossRefGoogle Scholar
Wilf, H. S. (2005). Generatingfunctionology, 3rd edn. AK Peters/CRC Press, New York.10.1201/b10576CrossRefGoogle Scholar
Yuan, M. (2024). Asymptotic distribution of degree-based topological indices. MATCH Commun. Math. Comput. Chem. 91, 135196.10.46793/match.91-1.135YCrossRefGoogle Scholar
Yuan, M. (2024). On the Randić index and its variants of network data. TEST 33, 155179.10.1007/s11749-023-00887-6CrossRefGoogle Scholar
Zhang, S. and Zhang, H. (2006). Unicyclic graphs with the first three smallest and largest first general Zagreb index. MATCH Commun. Math. Comput. Chem. 55, 427438.Google Scholar