Hostname: page-component-76c49bb84f-sz5hq Total loading time: 0 Render date: 2025-07-04T10:21:38.669Z Has data issue: false hasContentIssue false

Time parallelization for hyperbolic and parabolic problems

Published online by Cambridge University Press:  01 July 2025

Martin J. Gander
Affiliation:
Department of Mathematics, University of Geneva, CP64, 1211 Geneva 4, Switzerland E-mail: martin.gander@unige.ch
Shu-Lin Wu*
Affiliation:
School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China E-mail: wushulin84@hotmail.com
Tao Zhou
Affiliation:
Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China E-mail: tzhou@lsec.cc.ac.cn
*
* Corresponding author
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Time parallelization, also known as PinT (parallel-in-time), is a new research direction for the development of algorithms used for solving very large-scale evolution problems on highly parallel computing architectures. Despite the fact that interesting theoretical work on PinT appeared as early as 1964, it was not until 2004, when processor clock speeds reached their physical limit, that research in PinT took off. A distinctive characteristic of parallelization in time is that information flow only goes forward in time, meaning that time evolution processes seem necessarily to be sequential. Nevertheless, many algorithms have been developed for PinT computations over the past two decades, and they are often grouped into four basic classes according to how the techniques work and are used: shooting-type methods; waveform relaxation methods based on domain decomposition; multigrid methods in space–time; and direct time parallel methods. However, over the past few years, it has been recognized that highly successful PinT algorithms for parabolic problems struggle when applied to hyperbolic problems. We will therefore focus on this important aspect, first by providing a summary of the fundamental differences between parabolic and hyperbolic problems for time parallelization. We then group PinT algorithms into two basic groups. The first group contains four effective PinT techniques for hyperbolic problems: Schwarz waveform relaxation (SWR) with its relation to tent pitching; parallel integral deferred correction; ParaExp; and ParaDiag. While the methods in the first group also work well for parabolic problems, we then present PinT methods specifically designed for parabolic problems in the second group: Parareal; the parallel full approximation scheme in space–time (PFASST); multigrid reduction in time (MGRiT); and space–time multigrid (STMG). We complement our analysis with numerical illustrations using four time-dependent PDEs: the heat equation; the advection–diffusion equation; Burgers’ equation; and the second-order wave equation.

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

References

Antoine, X. and Lorin, E. (2016), Lagrange–Schwarz waveform relaxation domain decomposition methods for linear and nonlinear quantum wave problems, Appl. Math. Lett. 57, 3845.10.1016/j.aml.2015.12.012CrossRefGoogle Scholar
Antoine, X. and Lorin, E. (2017), An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross–Pitaevskii equations, Numer . Math. 137, 923958.Google Scholar
Audusse, E., Dreyfuss, P. and Merlet, B. (2010), Optimized Schwarz waveform relaxation for the primitive equations of the ocean, SIAM J. Sci. Comput. 32, 29082936.10.1137/090770059CrossRefGoogle Scholar
Axelsson, A. O. H. and Verwer, J. G. (1985), Boundary value techniques for initial value problems in ordinary differential equations, Math. Comp. 45, 153171.10.1090/S0025-5718-1985-0790649-9CrossRefGoogle Scholar
Banjai, L. and Peterseim, D. (2012), Parallel multistep methods for linear evolution problems, IMA J. Numer. Anal. 32, 12171240.CrossRefGoogle Scholar
Bellen, A. and Zennaro, M. (1989), Parallel algorithms for initial-value problems for difference and differential equations, J. Comput. Appl. Math. 25, 341350.10.1016/0377-0427(89)90037-XCrossRefGoogle Scholar
Bennequin, D., Gander, M. J. and Halpern, L. (2009), A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Math. Comp. 78, 185223.10.1090/S0025-5718-08-02145-5CrossRefGoogle Scholar
Bennequin, D., Gander, M. J., Gouarin, L. and Halpern, L. (2016), Optimized Schwarz waveform relaxation for advection reaction diffusion equations in two dimensions, Numer. Math. 134, 513567.10.1007/s00211-015-0784-8CrossRefGoogle Scholar
Besse, C. and Xing, F. (2017), Schwarz waveform relaxation method for one-dimensional Schrödinger equation with general potential, Numer . Algorithms 74, 393426.10.1007/s11075-016-0153-4CrossRefGoogle Scholar
Bini, D. A., Latouche, G. and Meini, B. (2005), Numerical Methods for Structured Markov Chains, Oxford University Press.10.1093/acprof:oso/9780198527688.001.0001CrossRefGoogle Scholar
Bjørhus, M. (1995), On domain decomposition, subdomain iteration and waveform relaxation. PhD thesis, University of Trondheim, Norway.Google Scholar
Böhmer, K. and Stetter, H. J. (1984), Defect Correction Methods, Theory and Applications, Springer.10.1007/978-3-7091-7023-6CrossRefGoogle Scholar
Bolten, M., Moser, D. and Speck, R. (2017), A multigrid perspective on the parallel full approximation scheme in space and time, Numer . Linear Alg. Appl. 24, art. e2110.10.1002/nla.2110CrossRefGoogle Scholar
Bolten, M., Moser, D. and Speck, R. (2018), Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems, Numer . Linear Alg. Appl. 25, art. e2208.10.1002/nla.2208CrossRefGoogle Scholar
Bouillon, A., Samaey, G. and Meerbergen, K. (2024), Diagonalization-based preconditioners and generalized convergence bounds for ParaOpt, SIAM J. Sci. Comput. 46, S317S345.10.1137/23M1571423CrossRefGoogle Scholar
Brandt, A. (1977), Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31, 333390.10.1090/S0025-5718-1977-0431719-XCrossRefGoogle Scholar
Brugnano, L. and Trigiante, D. (2003), Solving Differential Problems by Multistep Initial and Boundary Value Methods, Gordon and Breach.Google Scholar
Brugnano, L., Mazzia, F. and Trigiante, D. (1993), Parallel implementation of BVM methods, Appl. Numer. Math. 11, 115124.10.1016/0168-9274(93)90043-QCrossRefGoogle Scholar
Cai, X.-C. (1991), Additive Schwarz algorithms for parabolic convection–diffusion equations, Numer . Math. 60, 4161.Google Scholar
Cai, X.-C. (1994), Multiplicative Schwarz methods for parabolic problems, SIAM J. Sci. Comput. 15, 587603.10.1137/0915039CrossRefGoogle Scholar
Chan, R. H. and Ng, M. K. (1996), Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38, 427482.10.1137/S0036144594276474CrossRefGoogle Scholar
Chartier, P. and Philippe, B. (1993), A parallel shooting technique for solving dissipative ODEs, Computing 51, 209236.10.1007/BF02238534CrossRefGoogle Scholar
Chaudet-Dumas, B., Gander, M. J. and Pogozelskyte, A. (2024), An optimized space–time multigrid algorithm for parabolic PDEs. Available at arXiv:2302.13881.Google Scholar
Chawla, M. M. (1983), Unconditionally stable Noumerov-type methods for second order differential equations, BIT 23, 541542.10.1007/BF01933627CrossRefGoogle Scholar
Christlieb, A. J., Macdonald, C. B. and Ong, B. W. (2010), Parallel high-order integrators, SIAM J. Sci. Comput. 32, 818835.10.1137/09075740XCrossRefGoogle Scholar
Ciaramella, G. and Gander, M. J. (2017), Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains, Part I, SIAM J. Numer. Anal. 55, 13301356.10.1137/16M1065215CrossRefGoogle Scholar
Ciaramella, G. and Gander, M. J. (2018a), Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains, Part II, SIAM J. Numer. Anal. 56, 14981524.10.1137/17M1115885CrossRefGoogle Scholar
Ciaramella, G. and Gander, M. J. (2018b), Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains, Part III, Electron . Trans. Numer. Anal. 49, 201243.Google Scholar
Ciaramella, G. and Gander, M. J. (2022), Iterative Methods and Preconditioners for Systems of Linear Equations, SIAM.10.1137/1.9781611976908CrossRefGoogle Scholar
Ciaramella, G., Gander, M. J. and Mazzieri, I. (2023), Unmapped tent pitching schemes by waveform relaxation, in Domain Decomposition Methods in Science and Engineering XXVII (Z. Dostál et al., eds), Vol. 149 of Lecture Notes in Computational Science and Engineering, Springer.Google Scholar
Cortial, J. and Farhat, C. (2009), A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems, Internat. J. Numer. Methods Engrg 77, 451470.10.1002/nme.2418CrossRefGoogle Scholar
Courvoisier, Y. and Gander, M. J. (2013), Time domain Maxwell equations solved with Schwarz waveform relaxation methods, in Domain Decomposition Methods in Science and Engineering XX (R. Bank et al., eds), Vol. 91 of Lecture Notes in Computational Science and Engineering, Springer, pp. 263270.10.1007/978-3-642-35275-1_30CrossRefGoogle Scholar
Danieli, F. and Wathen, A. J. (2021), All-at-once solution of linear wave equations, Numer . Linear Algebra Appl. 28, art. e2386.10.1002/nla.2386CrossRefGoogle Scholar
Danieli, F., Southworth, B. S. and Wathen, A. J. (2022), Space–time block preconditioning for incompressible flow, SIAM J. Sci. Comput. 44, A337A363.10.1137/21M1390773CrossRefGoogle Scholar
De Sterck, H., Falgout, R. D. and Krzysik, O. A. (2023a), Fast multigrid reduction-in-time for advection via modified semi-Lagrangian coarse-grid operators, SIAM J. Sci. Comput. 45, A1890A1916.10.1137/22M1486522CrossRefGoogle Scholar
De Sterck, H., Falgout, R. D., Friedhoff, S., Krzysik, O. A. and MacLachlan, S. P. (2021), Optimizing multigrid reduction-in-time and Parareal coarse-grid operators for linear advection, Numer . Linear Alg. Appl. 28, art. e2367.10.1002/nla.2367CrossRefGoogle Scholar
De Sterck, H., Falgout, R. D., Krzysik, O. A. and Schroder, J. B. (2023b), Efficient multigrid reduction-in-time for method-of-lines discretizations of linear advection, J. Sci. Comput. 96, art. 1.10.1007/s10915-023-02223-4CrossRefGoogle Scholar
Deuflhard, P. (2004), Newton Methods for Nonlinear Problems, Springer.Google Scholar
Dobrev, V. A., Kolev, T. V., Petersson, N. A. and Schroder, J. B. (2017), Two-level convergence theory for multigrid reduction in time (MGRIT), SIAM J. Sci. Comput. 39, S501S527.10.1137/16M1074096CrossRefGoogle Scholar
Dutt, A., Greengard, L. and Rokhlin, V. (2000), Spectral deferred correction methods for ordinary differential equations, BIT 40, 241266.10.1023/A:1022338906936CrossRefGoogle Scholar
Emmett, M. and Minion, M. L. (2012), Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci. 7, 105132.10.2140/camcos.2012.7.105CrossRefGoogle Scholar
Falgout, R. D., Friedhoff, S., Kolev, T. V., MacLachlan, S. P. and Schroder, J. B. (2014), Parallel time integration with multigrid, SIAM J. Sci. Comput. 36, C635C661.10.1137/130944230CrossRefGoogle Scholar
Farhat, C. and Chandesris, M. (2003), Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure, and fluid–structure applications, Internat. J. Numer. Methods Engrg 58, 13971434.10.1002/nme.860CrossRefGoogle Scholar
Farhat, C., Cortial, J., Dastillung, C. and Bavestrello, H. (2006), Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses, Internat. J. Numer. Methods Engrg 67, 697724.10.1002/nme.1653CrossRefGoogle Scholar
Fox, L. (1954), A note on the numerical integration of first-order differential equations, Quart. J. Mech. Appl. Math. 7, 367378.10.1093/qjmam/7.3.367CrossRefGoogle Scholar
Fox, L. and Mitchell, A. R. (1957), Boundary-value techniques for the numerical solution of initial-value problems in ordinary differential equations, Quart. J. Mech. Appl. Math. 10, 232243.10.1093/qjmam/10.2.232CrossRefGoogle Scholar
Gander, M. J. (1997), Analysis of parallel algorithms for time dependent partial differential equations. PhD thesis, Stanford University.Google Scholar
Gander, M. J. (1999), A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations, Numer . Linear Algebra Appl. 6, 125145.10.1002/(SICI)1099-1506(199903)6:2<125::AID-NLA152>3.0.CO;2-43.0.CO;2-4>CrossRefGoogle Scholar
Gander, M. J. (2008), Schwarz methods over the course of time, Electron . Trans. Numer. Anal. 31, 228255.Google Scholar
Gander, M. J. (2015), 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods (Carraro, T. et al., eds), Vol. 9 of Contributions in Mathematical and Computational Sciences, Springer, pp. 69113.10.1007/978-3-319-23321-5_3CrossRefGoogle Scholar
Gander, M. J. (2017), Three different multigrid interpretations of the parareal algorithm and an adaptive variant, in Workshop on Space–Time Methods for Time-Dependent Partial Differential Equations.Google Scholar
Gander, M. J. and Güttel, S. (2013), ParaExp: A parallel integrator for linear initial-value problems, SIAM J. Sci. Comput. 35, C123C142.10.1137/110856137CrossRefGoogle Scholar
Gander, M. J. and Hairer, E. (2008), Nonlinear convergence analysis for the parareal algorithm, in Domain Decomposition Methods in Science and Engineering XVII (Widlund, O. B. and Keyes, D. E., eds), Vol. 60 of Lecture Notes in Computational Science and Engineering, Springer, pp. 4556.10.1007/978-3-540-75199-1_4CrossRefGoogle Scholar
Gander, M. J. and Hairer, E. (2014), Analysis for parareal algorithms applied to Hamiltonian differential equations, J. Comput. Appl. Math. 259, 213.10.1016/j.cam.2013.01.011CrossRefGoogle Scholar
Gander, M. J. and Halpern, L. (2004), Absorbing boundary conditions for the wave equation and parallel computing, Math. Comp. 74, 153176.10.1090/S0025-5718-04-01635-7CrossRefGoogle Scholar
Gander, M. J. and Halpern, L. (2007), Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems, SIAM J. Numer. Anal. 45, 666697.10.1137/050642137CrossRefGoogle Scholar
Gander, M. J. and Halpern, L. (2017), Time parallelization for nonlinear problems based on diagonalization, in Domain Decomposition Methods in Science and Engineering XXIII (Lee, C. O. et al., eds), Vol. 116 of Lecture Notes in Computational Science and Engineering, Springer, pp. 163170.CrossRefGoogle Scholar
Gander, M. J. and Lunet, T. (2020a), A Reynolds number dependent convergence estimate for the Parareal algorithm, in Domain Decomposition Methods in Science and Engineering XXV (Haynes, R. et al., eds), Vol. 138 of Lecture Notes in Computational Science and Engineering, Springer, pp. 277284.10.1007/978-3-030-56750-7_31CrossRefGoogle Scholar
Gander, M. J. and Lunet, T. (2020b), Toward error estimates for general space–time discretizations of the advection equation, J. Comput. Vis. Sci. 23, 114.Google Scholar
Gander, M. J. and Lunet, T. (2024), Time Parallel Time Integration, SIAM.10.1137/1.9781611978025CrossRefGoogle Scholar
Gander, M. J. and Neumüller, M. (2016), Analysis of a new space–time parallel multigrid algorithm for parabolic problems, SIAM J. Sci. Comput. 38, A2173A2208.10.1137/15M1046605CrossRefGoogle Scholar
Gander, M. J. and Palitta, D. (2024), A new ParaDiag time-parallel time integration method, SIAM J. Sci. Comput. 46, A697A718.10.1137/23M1568028CrossRefGoogle Scholar
Gander, M. J. and Rohde, C. (2005), Overlapping Schwarz waveform relaxation for convection-dominated nonlinear conservation laws, SIAM J. Sci. Comput. 27, 415439.10.1137/030601090CrossRefGoogle Scholar
Gander, M. J. and Stuart, A. M. (1998), Space–time continuous analysis of waveform relaxation for the heat equation, SIAM J. Sci. Comput. 19, 20142031.10.1137/S1064827596305337CrossRefGoogle Scholar
Gander, M. J. and Vandewalle, S. (2007), Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput. 29, 556578.10.1137/05064607XCrossRefGoogle Scholar
Gander, M. J. and Wu, S.-L. (2019), Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique, Numer. Math. 143, 489527.10.1007/s00211-019-01060-8CrossRefGoogle Scholar
Gander, M. J. and Wu, S.-L. (2020), A diagonalization-based parareal algorithm for dissipative and wave propagation problems, SIAM J. Numer. Anal. 58, 29813009.10.1137/19M1271683CrossRefGoogle Scholar
Gander, M. J., Güttel, S. and Petcu, M. (2018a), A nonlinear ParaExp algorithm, in Domain Decomposition Methods in Science and Engineering XXIV (P. Bjørstad et al., eds), Vol. 125 of Lecture Notes in Computational Science and Engineering, Springer, pp. 261270.Google Scholar
Gander, M. J., Halpern, L. and Nataf, F. (1999), Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation, in Eleventh International Conference of Domain Decomposition Methods (C.-H. Lai et al., eds), ddm.org.10.1090/conm/218/03038CrossRefGoogle Scholar
Gander, M. J., Halpern, L. and Nataf, F. (2003), Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal. 41, 16431681.10.1137/S003614290139559XCrossRefGoogle Scholar
Gander, M. J., Halpern, L., Hubert, F. and Krell, S. (2020), Optimized Schwarz methods with general Ventcell transmission conditions for anisotropic diffusion with discrete duality finite volume discretizations, Moroccan J. Pure Appl. Anal. 7, 182213.10.2478/mjpaa-2021-0014CrossRefGoogle Scholar
Gander, M. J., Halpern, L., Hubert, F. and Krell, S. (2021a), Discrete optimization of Robin transmission conditions for anisotropic diffusion with discrete duality finite volume methods, Vietnam J. Math. 49, 13491378.10.1007/s10013-021-00518-3CrossRefGoogle Scholar
Gander, M. J., Halpern, L., Rannou, J. and Ryan, J. (2019), A direct time parallel solver by diagonalization for the wave equation, SIAM J. Sci. Comput. 41, A220A245.10.1137/17M1148347CrossRefGoogle Scholar
Gander, M. J., Halpern, L., Ryan, J. and Tran, T. T. B. (2016a), A direct solver for time parallelization, in Domain Decomposition Methods in Science and Engineering XXII (T. Dickopf et al., eds), Vol. 104 of Lecture Notes in Computational Science and Engineering, Springer, pp. 491499.10.1007/978-3-319-18827-0_50CrossRefGoogle Scholar
Gander, M. J., Kwok, F. and Mandal, B. (2016b), Dirichlet–Neumann and Neumann–Neumann waveform relaxation algorithms for parabolic problems, ETNA 45, 424456.Google Scholar
Gander, M. J., Kwok, F. and Mandal, B. C. (2021b), Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains, BIT Numer. Math. 61, 173207.10.1007/s10543-020-00823-2CrossRefGoogle Scholar
Gander, M. J., Kwok, F. and Zhang, H. (2018b), Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT, J. Comput. Vis. Sci. 19, 5974.10.1007/s00791-018-0297-yCrossRefGoogle Scholar
Gander, M. J., Liu, J., Wu, S.-L., Yue, X. and Zhou, T. (2021c), ParaDiag: Parallel-in-time algorithms based on the diagonalization technique. Available at arXiv:2005.09158.Google Scholar
Gander, M. J., Lunet, T. and Pogoželskytė, A. (2023a), Convergence of Parareal for a vibrating string with viscoelastic damping, in Domain Decomposition Methods in Science and Engineering XXVI (Brenner, S. C. et al., eds), Vol. 145 of Lecture Notes in Computational Science and Engineering, Springer, pp. 435442.10.1007/978-3-030-95025-5_46CrossRefGoogle Scholar
Gander, M. J., Lunet, T., Ruprecht, D. and Speck, R. (2023b), A unified analysis framework for iterative parallel-in-time algorithms, SIAM J. Sci. Comput. 45, A2275A2303.10.1137/22M1487163CrossRefGoogle Scholar
Gander, M. J., Lunowa, S. B. and Rohde, C. (2023c), Non-overlapping Schwarz waveform-relaxation for nonlinear advection–diffusion equations, SIAM J. Sci. Comput. 45, A49A73.10.1137/21M1415005CrossRefGoogle Scholar
Gander, M. J., Ohlberger, M. and Rave, S. (2024), A Parareal algorithm without coarse propagator? Available at arXiv:2409.02673.Google Scholar
Giladi, E. and Keller, H. B. (2002), Space–time domain decomposition for parabolic problems, Numer. Math. 93, 279313.10.1007/s002110100345CrossRefGoogle Scholar
Gopalakrishnan, J., Hochsteger, M., Schöberl, J. and Wintersteiger, C. (2020), An explicit mapped tent pitching scheme for Maxwell equations, in Spectral and High Order Methods for Partial Differential Equations (ICOSAHOM 2018), pp. 359369.10.1007/978-3-030-39647-3_28CrossRefGoogle Scholar
Gopalakrishnan, J., Schöberl, J. and Wintersteiger, C. (2017), Mapped tent pitching schemes for hyperbolic systems, SIAM J. Sci. Comput. 39, B1043B1063.10.1137/16M1101374CrossRefGoogle Scholar
Gu, X. M. and Wu, S.-L. (2020), A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys. 417, art. 109576.10.1016/j.jcp.2020.109576CrossRefGoogle Scholar
Guibert, D. and Tromeur-Dervout, D. (2007), Parallel deferred correction method for CFD problems, in Parallel Computational Fluid Dynamics 2006, Elsevier, pp. 131138.10.1016/B978-044453035-6/50019-5CrossRefGoogle Scholar
Hackbusch, W. (1984), Parabolic multi-grid methods, in Computing Methods in Applied Sciences and Engineering VI (Glowinski, R. and Lions, J.-L., eds), North-Holland, pp. 189197.Google Scholar
Halpern, L. and Szeftel, J. (2010), Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation, Math. Models Methods Appl. Sci. 20, 21672199.10.1142/S0218202510004891CrossRefGoogle Scholar
Heinzelreiter, B. and Pearson, J. W. (2024), Diagonalization-based parallel-in-time preconditioners for instationary fluid flow control problems. Available at arXiv:2405.18964.Google Scholar
Hessenthaler, A., Southworth, B. S., Nordsletten, D., Röhrle, O., Falgout, R. D. and Schroder, J. B. (2020), Multilevel convergence analysis of multigrid-reduction-in-time, SIAM J. Sci. Comput. 42, A771A796.10.1137/19M1238812CrossRefGoogle Scholar
Higham, N. J. (2008), Functions of Matrices: Theory and Computation, SIAM.10.1137/1.9780898717778CrossRefGoogle Scholar
Horton, G. and Vandewalle, S. (1995), A space–time multigrid method for parabolic partial differential equations, SIAM J. Sci. Comput. 16, 848864.10.1137/0916050CrossRefGoogle Scholar
Horton, G., Vandewalle, S. and Worley, P. (1995), An algorithm with polylog parallel complexity for solving parabolic partial differential equations, SIAM J. Sci. Comput. 16, 531541.10.1137/0916034CrossRefGoogle Scholar
Howse, A. J., Sterck, H. D., Falgout, R. D., MacLachlan, S. and Schroder, J. (2019), Parallel-in-time multigrid with adaptive spatial coarsening for the linear advection and inviscid Burgers equations, SIAM J. Sci. Comput. 41, A538A565.10.1137/17M1144982CrossRefGoogle Scholar
Janssen, J. and Vandewalle, S. (1996), Multigrid waveform relaxation of spatial finite element meshes: The continuous-time case, SIAM J. Numer. Anal. 33, 456474.10.1137/0733024CrossRefGoogle Scholar
Kooij, G. L., Botchev, M. A. and Geurts, B. J. (2017), A block Krylov subspace implementation of the time-parallel ParaExp method and its extension for nonlinear partial differential equations, J. Comput. Appl. Math. 316, 229246.10.1016/j.cam.2016.09.036CrossRefGoogle Scholar
Kressner, D., Massei, S. and Zhu, J. (2023), Improved ParaDiag via low-rank updates and interpolation, Numer. Math. 155, 175209.10.1007/s00211-023-01372-wCrossRefGoogle Scholar
Lelarasmee, E., Ruehli, A. E. and Sangiovanni-Vincentelli, A. L. (1982), The waveform relaxation method for time-domain analysis of large scale integrated circuits, IEEE Trans. CAD IC Syst. 1, 131145.10.1109/TCAD.1982.1270004CrossRefGoogle Scholar
Lin, X. L. and Ng, M. (2021), An all-at-once preconditioner for evolutionary partial differential equations, SIAM J. Sci. Comput. 43, A2766A2784.10.1137/20M1316354CrossRefGoogle Scholar
Lions, J.-L., Maday, Y. and Turinici, G. (2001), A Parareal in time discretization of PDEs, C.R . Acad. Sci. Paris, Ser. I 332, 661668.10.1016/S0764-4442(00)01793-6CrossRefGoogle Scholar
Liu, J. and Wu, S.-L. (2020), A fast block α-circulant preconditoner for all-at-once systems from wave equations, SIAM J. Matrix Anal. Appl. 41, 19121943.10.1137/19M1309869CrossRefGoogle Scholar
Liu, J. and Wu, S.-L. (2022), Parallel-in-time preconditioner for the Sinc-Nyström systems, SIAM J. Sci. Comput. 44, A2386A2411.10.1137/21M1462696CrossRefGoogle Scholar
Liu, J., Wang, X.-S., Wu, S.-L. and Zhou, T. (2022), A well-conditioned direct PinT algorithm for first-and second-order evolutionary equations, Adv. Comput. Math. 48, art. 16.10.1007/s10444-022-09928-4CrossRefGoogle Scholar
Lubich, C. and Ostermann, A. (1987), Multi-grid dynamic iteration for parabolic equations, BIT 27, 216234.CrossRefGoogle Scholar
Maday, Y. and Mula, O. (2020), An adaptive parareal algorithm, J. Comput. Appl. Math. 377, art. 112915.10.1016/j.cam.2020.112915CrossRefGoogle ScholarPubMed
Maday, Y. and Rønquist, E. M. (2008), Parallelization in time through tensor-product space–time solvers, C.R . Math. Acad. Sci. Paris 346, 113118.10.1016/j.crma.2007.09.012CrossRefGoogle Scholar
Martin, V. (2009), Schwarz waveform relaxation algorithms for the linear viscous equatorial shallow water equations, SIAM J. Sci. Comput. 31, 35953625.10.1137/070691450CrossRefGoogle Scholar
Mathew, T. P., Sarkis, M. and Schaerer, C. E. (2010), Analysis of block parareal preconditioners for parabolic optimal control problems, SIAM J. Sci. Comput. 32, 11801200.CrossRefGoogle Scholar
McDonald, E., Pestana, J. and Wathen, A. (2018), Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations, SIAM J. Sci. Comput. 40, A1012A1033.10.1137/16M1062016CrossRefGoogle Scholar
Merkel, M., Niyonzima, I. and Schöps, S. (2017), ParaExp using leapfrog as integrator for high-frequency electromagnetic simulations, Radio Sci. 52, 15581569.10.1002/2017RS006357CrossRefGoogle Scholar
Meurant, G. A. (1991), Numerical experiments with a domain decomposition method for parabolic problems on parallel computers, in Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, SlAM, pp. 394408.Google Scholar
Minion, M. (2011), A hybrid parareal spectral deferred corrections method, Commun . Appl. Math. Comput. Sci. 5, 265301.Google Scholar
Minion, M. L. (2010), A hybrid parareal spectral deferred corrections method, Commun . Appl. Math. Comput. Sci. 5, 265301.Google Scholar
Minion, M. L., Speck, R., Bolten, M., Emmett, M. and Ruprecht, D. (2015), Interweaving PFASST and parallel multigrid, SIAM J. Sci. Comput. 37, S244S263.10.1137/14097536XCrossRefGoogle Scholar
Miranker, W. L. and Liniger, W. (1967), Parallel methods for the numerical integration of ordinary differential equations, Math. Comp. 91, 303320.10.1090/S0025-5718-1967-0223106-8CrossRefGoogle Scholar
Moler, C. and Van Loan, C. (2003), Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45, 349.10.1137/S00361445024180CrossRefGoogle Scholar
Neumüller, M. and Smears, I. (2019), Time-parallel iterative solvers for parabolic evolution equations, SIAM J. Sci. Comput. 41, C28C51.10.1137/18M1172466CrossRefGoogle Scholar
Nevanlinna, O. (1989), Remarks on Picard–Lindelöf iteration, Part I, BIT 29, 328346.10.1007/BF01952687CrossRefGoogle Scholar
Ng, M. K. (2004), Iterative Methods for Toeplitz Systems, Oxford Academic.10.1093/oso/9780198504207.001.0001CrossRefGoogle Scholar
Nievergelt, J. (1964), Parallel methods for integrating ordinary differential equations, Commun . Assoc. Comput. Mach. 7, 731733.Google Scholar
Ong, B. W. and Schröder, J. B. (2020), Applications of time parallelization, J. Comput. Vis. Sci. 23, 115.Google Scholar
Ortega, J. M. and Rheinboldt, W. C. (2000), Iterative Solution of Nonlinear Equations in Several Variables, SIAM.10.1137/1.9780898719468CrossRefGoogle Scholar
Pearson, J. W., Stoll, M. and Wathen, A. J. (2012), Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl. 33, 11261152.10.1137/110847949CrossRefGoogle Scholar
Saha, P., Stadel, J. and Tremaine, S. (1997), A parallel integration method for solar system dynamics, Astronom. J. 114, 409415.10.1086/118485CrossRefGoogle Scholar
Schreiber, M., Peixoto, P. S., Haut, T. and Wingate, B. (2018), Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems, Internat. J. High Performance Comput. Appl. 32, 913933.10.1177/1094342016687625CrossRefGoogle Scholar
Schwarz, H. (1870), Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15, 272286.Google Scholar
Simoens, J. and Vandewalle, S. (2000), Waveform relaxation with fast direct methods as preconditioner, SIAM J. Sci. Comput. 21, 17551773.10.1137/S1064827598338986CrossRefGoogle Scholar
Speck, R., Ruprecht, D., Emmett, M., Bolten, M. and Krause, R. (2014), A space–time parallel solver for the three-dimensional heat equation, in Parallel Computing: Accelerating Computational Science and Engineering (CSE), Vol. 25 of Advances in Parallel Computing, IOS Press, pp. 263272.Google Scholar
Speck, R., Ruprecht, D., Krause, R., Emmett, M., Minion, M., Winkel, M. and Gibbon, P. (2012), A massively space–time parallel N-body solver, in SC’12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, IEEE Computer Society Press, pp. 111.Google Scholar
Strang, G. (1986), A proposal for Toeplitz matrix calculations, Stud . Appl. Math. 74, 171176.Google Scholar
Thery, S., Pelletier, C., Lemarié, F. and Blayo, E. (2022), Analysis of Schwarz waveform relaxation for the coupled Ekman boundary layer problem with continuously variable coefficients, Numer . Algorithms 89, 11451181.10.1007/s11075-021-01149-yCrossRefGoogle Scholar
Van Lent, J. and Vandewalle, S. (2002), Multigrid waveform relaxation for anisotropic partial differential equations, Numer . Algorithms 31, 361380.10.1023/A:1021191719400CrossRefGoogle Scholar
Van Loan, F., C and Pitsianis, N. (1993), Approximation with Kronecker products, in Linear Algebra for Large Scale and Real-Time Applications (Moonen, M. S. et al., eds), Vol. 232 of NATO ASI Series, Springer, pp. 293314.10.1007/978-94-015-8196-7_17CrossRefGoogle Scholar
Vandewalle, S. and Van de Velde, E. (1994), Space–time concurrent multigrid waveform relaxation, Ann. Numer. Math 1, 347363.Google Scholar
Womble, D. E. (1990), A time-stepping algorithm for parallel computers, SIAM J. Sci. Statist. Comput. 11, 824837.10.1137/0911049CrossRefGoogle Scholar
Worley, P. (1991), Parallelizing across time when solving time-dependent partial differential equations, in Proceedings of the Fifth SIAM Conference on Parallel Processing for Scientific Computing (Sorensen, D., ed.), SIAM, pp. 246252.Google Scholar
Wu, S.-L. (2015), Convergence analysis of some second-order parareal algorithms, IMA J. Numer. Anal. 35, 13151341.10.1093/imanum/dru031CrossRefGoogle Scholar
Wu, S.-L. (2017), Optimized overlapping Schwarz waveform relaxation for a class of time-fractional diffusion problems, J. Sci. Comput. 72, 842862.10.1007/s10915-017-0379-xCrossRefGoogle Scholar
Wu, S.-L. (2018), Toward parallel coarse grid correction for the parareal algorithm, SIAM J. Sci. Comput. 40, A1446A1472.10.1137/17M1141102CrossRefGoogle Scholar
Wu, S.-L. and Al-Khaleel, M. D. (2014), Semi-discrete Schwarz waveform relaxation algorithms for reaction diffusion equations, BIT 54, 831866.10.1007/s10543-014-0475-3CrossRefGoogle Scholar
Wu, S.-L. and Liu, J. (2020), A parallel-in-time block-circulant preconditioner for optimal control of wave equations, SIAM J. Sci. Comput. 42, A1510A1540.10.1137/19M1289613CrossRefGoogle Scholar
Wu, S.-L. and Xu, Y. (2017), Convergence analysis of Schwarz waveform relaxation with convolution transmission conditions, SIAM J. Sci. Comput. 39, A890A921.10.1137/16M1072620CrossRefGoogle Scholar
Wu, S.-L. and Zhou, T. (2015), Convergence analysis for three parareal solvers, SIAM J. Sci. Comput. 37, A970A992.10.1137/140970756CrossRefGoogle Scholar
Wu, S.-L. and Zhou, T. (2019), Acceleration of the two-level MGRIT algorithm via the diagonalization technique, SIAM J. Sci. Comput. 41, A3421A3448.10.1137/18M1207697CrossRefGoogle Scholar
Wu, S.-L. and Zhou, T. (2021a), Parallel implementation for the two-stage SDIRK methods via diagonalization, J. Comput. Phys. 428, art. 110076.10.1016/j.jcp.2020.110076CrossRefGoogle Scholar
Wu, S.-L. and Zhou, T. (2024), Convergence analysis of the parareal algorithm with non-uniform fine time grid, SIAM J. Numer. Anal. 62, 23082330.10.1137/23M1592481CrossRefGoogle Scholar
Wu, S.-L., Huang, C. M. and Huang, T. Z. (2012), Convergence analysis of the overlapping Schwarz waveform relaxation algorithm for reaction–diffusion equations with time delay, IMA J. Numer. Anal. 32, 632671.10.1093/imanum/drr012CrossRefGoogle Scholar
Wu, S.-L., Wang, Z. and Zhou, T. (2023), PinT preconditioner for forward–backward evolutionary equations, SIAM J. Matrix Anal. Appl. 44, 17711798.10.1137/22M1516476CrossRefGoogle Scholar
Wu, S.-L., Yang, Z. H. and Zhou, T. (2025), Mixed precision iterative ParaDiag algorithm. Submitted.Google Scholar
Wu, S.-L., Zhou, T. and Zhou, Z. (2022), A uniform spectral analysis for a preconditioned all-at-once system from first-order and second-order evolutionary problems, SIAM J. Matrix Anal. Appl. 43, 13311353.10.1137/21M145358XCrossRefGoogle Scholar
Wu, S. N. and Zhou, Z. (2021b), A parallel-in-time algorithm for high-order BDF methods for diffusion and subdiffusion equations, SIAM J. Sci. Comput. 43, A3627A3656.10.1137/20M1355690CrossRefGoogle Scholar
Yang, J., Yuan, Z. M. and Zhou, Z. (2023), Robust convergence of parareal algorithms with arbitrarily high-order fine propagators, CSIAM Trans. Appl. Math. 4, 566591.10.4208/csiam-am.SO-2022-0025CrossRefGoogle Scholar