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Time parallelization, also known as PinT (parallel-in-time), is a new research direc-
tion for the development of algorithms used for solving very large-scale evolution
problems on highly parallel computing architectures. Despite the fact that inter-
esting theoretical work on PinT appeared as early as 1964, it was not until 2004,
when processor clock speeds reached their physical limit, that research in PinT
took off. A distinctive characteristic of parallelization in time is that information
flow only goes forward in time, meaning that time evolution processes seem ne-
cessarily to be sequential. Nevertheless, many algorithms have been developed for
PinT computations over the past two decades, and they are often grouped into four
basic classes according to how the techniques work and are used: shooting-type
methods; waveform relaxation methods based on domain decomposition; multigrid
methods in space–time; and direct time parallel methods. However, over the past few
years, it has been recognized that highly successful PinT algorithms for parabolic
problems struggle when applied to hyperbolic problems. We will therefore focus
on this important aspect, first by providing a summary of the fundamental differ-
ences between parabolic and hyperbolic problems for time parallelization. We then
group PinT algorithms into two basic groups. The first group contains four effective
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PinT techniques for hyperbolic problems: Schwarz waveform relaxation (SWR)
with its relation to tent pitching; parallel integral deferred correction; ParaExp;
and ParaDiag. While the methods in the first group also work well for parabolic
problems, we then present PinT methods specifically designed for parabolic problems
in the second group: Parareal; the parallel full approximation scheme in space–time
(PFASST); multigrid reduction in time (MGRiT); and space–time multigrid (STMG).
We complement our analysis with numerical illustrations using four time-dependent
PDEs: the heat equation; the advection–diffusion equation; Burgers’ equation; and
the second-order wave equation.
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1. Introduction
Time parallelization has been a very active field of research over the past two
decades. The reason for this is that hardware development has reached its physical
limit for clock speed, and faster computation is only possible using ever more
cores. We see this development even in small-scale computing devices, such as
smartphones, that have become multicore, and high-performance computers now
have millions of cores. Time parallelization methods, also referred to as parallel-
in-time (PinT) methods, are methods that allow us to use more cores for evolution
than if we were only to parallelize in space. Sixty years ago, in a visionary paper,
Nievergelt (1964, p. 733) proposed such an approach, concluding with:

The integration methods introduced in this paper are to be regarded as tentative examples
of a much wider class of numerical procedures in which parallelism is introduced at the
expense of redundancy of computation. As such, their merits lie not so much in their
usefulness as numerical algorithms as in their potential as prototypes of better methods
based on the same principle. It is believed that more general and improved versions of
these methods will be of great importance when computers capable of executing many
computations in parallel become available.

Several new methods like these were then developed over the decades that fol-
lowed Nievergelt, until PinT methods were brought to the forefront of research with
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Figure 1.1. Sequential nature of time integration using forward Euler.

the advent of the Parareal algorithm (Lions, Maday and Turinici 2001); see the
historical review by Gander (2015), the review focusing on PinT applications by
Ong and Schröder (2020), and also the recent research monograph by Gander and
Lunet (2024).

Parallelization in time for evolution problems may, at first glance, seem im-
possible due to the causality principle: solutions at later times are determined by
solutions at earlier times, and not vice versa. Evolution problems thus have an
inherent sequential nature. This becomes clear when we consider a simple ordin-
ary differential equation as our evolution problem, along with its forward Euler
discretization,

𝜕𝑡𝑢 = 𝑓 (𝑢), 𝑢(0) = 𝑢0, 𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 𝑓 (𝑢𝑛). (1.1)

The recurrence formula of forward Euler clearly shows that we must know 𝑢𝑛 before
we can compute 𝑢𝑛+1, as illustrated in Figure 1.1. It is not clear, for example, if we
can do useful computational work for the approximations 𝑢10 to 𝑢12 before knowing
the approximation 𝑢9.

Nevertheless, many new PinT methods have been developed since 2001, and
they are often classified into the following four groups based on the algorithmic
techniques used. See Gander (2015) and the recent research monograph by Gander
and Lunet (2024); we give more complete references later in the article.

(1) Methods based on multiple shooting going back to the work of Nievergelt
(1964), Bellen and Zennaro (1989) and Chartier and Philippe (1993), lead-
ing to Saha, Stadel and Tremaine (1997) and culminating in the Parareal
algorithm (Lions et al. 2001) and many variants.

(2) Methods based on domain decomposition (Schwarz 1870) and waveform
relaxation (Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982) that were
combined in Bjørhus (1995), resulting in Schwarz waveform relaxation (SWR)
(Gander, Halpern and Nataf 1999).

(3) Methods based on multigrid going back to the parabolic multigrid method
(Hackbusch 1984), and developed into fully parallel space–time multigrid
(STMG) methods (Gander and Neumüller 2016).
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(4) Direct time-parallel methods, which started with parallel time-stepping tech-
niques (Miranker and Liniger 1967) and led to the modern revisionist integral
deferred correction (RIDC) method (Christlieb, Macdonald and Ong 2010).
Currently very successful methods in this class are ParaExp (Gander and
Güttel 2013), and parallelization by diagonalization (Maday and Rønquist
2008), which led to ParaDiag (Gander et al. 2021c).

The first three groups contain iterative methods whereas the last one contains
non-iterative methods, but the boundaries in this classification are not strict. A
good example is that of the ParaDiag methods, which were at first exclusively
direct solvers based on the diagonalization of the time-stepping matrix, but then
iterative variants rapidly appeared, within WR methods from the second group
(Gander and Wu 2019) or within Parareal from the first group (Gander and Wu
2020). Approximate ParaDiag methods were also used as stationary iterations
or preconditioners for Krylov methods, applied directly to the all-at-once system
derived from the space–time discretization in the third group (McDonald, Pestana
and Wathen 2018, Liu and Wu 2020). Parareal from the first group can also be
interpreted as a multigrid method from the third group with aggressive coarsening
(Gander and Vandewalle 2007), and in turn MGRiT as a Parareal algorithm with
overlap (Gander, Kwok and Zhang 2018b).

Here, however, we would like to adopt a different approach to classifying PinT
methods, specifically based on the types of problems that they can effectively solve:

(1) effective PinT methods for hyperbolic problems,

(2) PinT methods designed for parabolic problems.

To achieve this, in Section 2 we explain intuitively why there must be a fundamental
distinction in PinT methods when solving hyperbolic or parabolic problems, and we
introduce model problems that will later serve to illustrate this for PinT methods.
Then, in Section 3, we describe effective PinT methods for hyperbolic problems,
which generally work even better for parabolic problems, and in Section 4 we
present PinT methods designed for parabolic problems, which generally struggle
when applied to hyperbolic problems. We will draw conclusions in Section 5. The
MATLAB codes for the numerical results in Sections 2–4 can be obtained from
https://github.com/wushulin/ActaPinT.

2. Model problems linking the parabolic and hyperbolic world
Our test problems will often be partial differential equations (PDEs) that allow
us to link the parabolic and hyperbolic worlds. A typical example is the linear
advection–diffusion equation we will first see in Section 2.2, which contains both
parabolic and hyperbolic components. We will also frequently use the system of
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ordinary differential equations (ODEs)

𝒖′(𝑡) = 𝐴𝒖(𝑡) + 𝒈(𝑡), 𝑡 ∈ (0, 𝑇],
𝒖(0) = 𝒖0,

(2.1)

where 𝐴 ∈ R𝑁𝑥×𝑁𝑥 is the discrete matrix arising from semi-discretizing the PDE
in space, because many time-parallel methods (except the domain decomposition
based methods) are described and analysed for ODEs. An important nonlinear PDE
variant of advection–diffusion is the so-called Burgers’ equation, which we will
first see in Section 2.3. Similarly to the linear case, in order to discuss time-parallel
methods in the nonlinear setting we will use the nonlinear system of ODEs

𝒖′(𝑡) = 𝑓 (𝒖(𝑡), 𝑡), 𝑡 ∈ (0, 𝑇],
𝒖(0) = 𝒖0,

(2.2)

where 𝑓 : R𝑁𝑥 × R → R𝑁𝑥 depends on its first variable in a nonlinear manner,
such as 𝑓 (𝒖(𝑡), 𝑡) = 𝐴𝒖(𝑡) + 𝐵𝒖2(𝑡) + 𝒈(𝑡) for Burgers’ equation.

However, we also introduce simpler equations that are of either parabolic or
hyperbolic nature, such as the heat equation and the second-order wave equation.
To avoid complicated notation, we will only consider model problems in one spatial
dimension on the unit interval Ω = (0, 1). This is not really a restriction, since the
applicability and convergence properties of PinT methods do not generally depend
on the space dimension.

2.1. Heat equation

Our parabolic model problem will be the one-dimensional heat equation

𝜕𝑡𝑢(𝑥, 𝑡) = 𝜕𝑥𝑥𝑢(𝑥, 𝑡) + 𝑔(𝑥, 𝑡) in Ω × (0, 𝑇], (2.3)

with initial value 𝑢(𝑥, 0) = 𝑢0(𝑥), and either homogeneous Dirichlet or Neumann
boundary conditions. An example solution with 𝑢0(𝑥) = 0 and a forcing function
that heats at four different time instances 𝑡1 = 0.1, 𝑡2 = 0.6, 𝑡3 = 1.35 and 𝑡4 = 1.85
in the middle of the space domain Ω = (0, 1),

𝑔(𝑥, 𝑡) = 10
4∑︁
𝑗=1

exp(−𝜎[(𝑡 − 𝑡 𝑗)2 + (𝑥 − 0.5)2]), (2.4)

is shown for 𝜎 = 200 in Figure 2.1(a–c), for homogeneous Dirichlet, Neumann
and periodic boundary conditions. We observe that with Dirichlet conditions the
solution does not propagate far in time, and thus we can compute, for example, the
solution for 𝑡 ∈ (1.7, 2.2) for the fourth source term independently from the solution
at earlier times! This is a prime example where, despite the causality principle,
we can perform useful computations for later time instances before knowing the
earlier ones. This concept can be naturally understood from daily life experience:
it is straightforward to predict the temperature in your living room in winter a week
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(a) (b) (c) (d)

Figure 2.1. Heat equation with homogeneous Dirichlet (a), Neumann (b) and
periodic boundary conditions (c), using the source term (2.4) and zero initial
condition 𝑢0(𝑥) = 0. In (d) we still use periodic boundary conditions but a zero
source term, with initial condition 𝑢0(𝑥) = sin2(8𝜋(1 − 𝑥)2).

or a month in advance; you simply need to know if the heater will be on and the
windows closed.

However, this changes significantly in our simple model problem when Neumann
conditions are applied, as shown in Figure 2.1(b). Here the solution for 𝑡 ∈ (1.7, 2.2)
is influenced by the first, second and third source terms at earlier times, since heat
is now accumulating, nicely illustrating the causality principle. This scenario
corresponds to a perfectly insulated room where heat cannot escape, and in this
situation it is crucial to know how frequently or for how long the heating was on,
since this heat will stay forever in the perfectly insulated room. Note, however, that
in practice it is difficult to have a perfectly insulated room, and heat will always
eventually escape, which one would model with a Robin boundary condition.

The situation in Figure 2.1(c) with periodic boundary conditions is similar to
the case with Neumann boundary conditions in Figure 2.1(b); the solution for
𝑡 ∈ (1.7, 2.2) is also influenced by the first, second and third source terms at earlier
times, and with periodic conditions, heat can never escape.

In Figure 2.1(d) we show a solution with zero source term and periodic boundary
conditions, but now imposing an initial condition with a precise, oscillating signal,
namely 𝑢0(𝑥) = sin2(8𝜋(1 − 𝑥)2). We see that the only information left from this
signal after a very short time is already a constant, about the same constant as from
the first two source terms in Figure 2.1(b,c).
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In spite of the causality principle, time parallelization and thus PinT computations
for a heat equation, and also more general parabolic problems, should thus be
rather easily possible in the case of Dirichlet boundary conditions, since then the
solutions are completely local in time (Gander, Ohlberger and Rave 2024), as is the
case in space with solvation models in computational chemistry; see Ciaramella
and Gander (2017, 2018a,b). With Neumann or periodic boundary conditions,
it should still be possible to do PinT computations, provided we can propagate
low-frequency solution components, like the constant in our example, effectively
over long times, for example using a coarse grid.

2.2. Advection–diffusion equation

We now consider the advection–diffusion equation with homogeneous Dirichlet
and periodic boundary conditions1 on the unit domain Ω = (0, 1),

𝜕𝑡𝑢(𝑥, 𝑡) + 𝜕𝑥𝑢(𝑥, 𝑡) − 𝜈𝜕𝑥𝑥𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) in Ω × (0, 𝑇], (2.5)

with initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥), where 𝜈 > 0 is the diffusion parameter.
In Figure 2.2(a–d) we show the solution obtained with zero Dirichlet boundary
conditions, and in Figure 2.2(e–h) the solution obtained with periodic boundary
conditions. In (a–c) and (e–g) we use a zero initial condition, 𝑢0(𝑥) = 0, and the
same source term (2.4) used for the heat equation for three different values of the
diffusion parameter, 𝜈 = 1, 10−2 and 5 × 10−4. We see that when 𝜈 is large, then
the diffusion part dominates and the solution has similar properties to the solution
of the heat equation. If 𝜈 is small, however, i.e. the advection part plays a dominant
role, then the solution is transported from left to right over a much longer time, as
we see in Figure 2.2(b,c). In (d) and (h) we use a zero source term but a non-zero
initial condition 𝑢0(𝑥) = sin2(8𝜋(1 − 𝑥)2) and again the small diffusion parameter
5 × 10−4. We see that now all the fine features present in the high-frequency
components of the initial condition are transported far in time. Nevertheless, for
both 𝜈 large and 𝜈 small, we can still compute the solution for 𝑡 ∈ (1.25, 2.5)
before we obtain the solution earlier in time, because all solution components are
eventually diffused or leave the domain.

For periodic boundary conditions, however, we see in Figure 2.2(e–h) that the
advection–diffusion equation transports information over long times: in (e) with
large diffusion this information is only low-frequency, a constant, as for the heat
equation, and PinT computations are still possible if we have a way of transporting
coarse solution components far in time, for example using a coarse grid. In (f) and
(g), however, we see that when the diffusion parameter becomes small, ever finer
information is transported very far in time, and for successful PinT computation
there must be a mechanism to propagate this information effectively far in time.
Panel (h), without source and just a non-zero initial condition, shows that for small
diffusion, a lot of fine, high-frequency information propagates very far in time, and

1 We would not learn anything new with Neumann conditions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2. Advection–diffusion equation with zero Dirichlet boundary conditions
(a–d) and periodic boundary conditions (e–h). In panels (a–c) and (e–g) we use a
zero initial condition, 𝑢0(𝑥) = 0, and the same source term as in Figure 2.1 for the
heat equation, and an ever smaller diffusion parameter 𝜈 = 1, 10−2 and 5 × 10−4.
Panels (d) and (h) show the solution for zero source term and initial condition
𝑢0(𝑥) = sin2(8𝜋(1 − 𝑥)2) with small diffusion 𝜈 = 5 × 10−4.
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we can no longer precompute the solution later in time without knowing the solution
earlier in time when the diffusion parameter becomes small. It is therefore difficult
to do PinT computations, especially when 𝜈 → 0, in the hyperbolic limit. This is
fundamentally different from the heat equation case, and only becomes manifest
with periodic boundary conditions and small diffusion, an important point when
testing the performance of PinT methods on advection-dominated problems.

2.3. Burgers’ equation

To illustrate the difference between the various PinT methods in a nonlinear setting,
we will use Burgers’ equation,

𝜕𝑡𝑢(𝑥, 𝑡) − 𝜈𝜕𝑥𝑥𝑢(𝑥, 𝑡) + 1
2
𝜕𝑥(𝑢2(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡) in Ω × (0, 𝑇],

𝑢(𝑥, 0) = 𝑢0(𝑥) in Ω,

(2.6)

with 𝜈 > 0. In Figure 2.3(a–d) we show the solution obtained with zero Dirichlet
boundary conditions, and in Figure 2.3(e–h) the solution obtained with periodic
boundary conditions. In (a–c) and (e–g) we use a zero initial condition, 𝑢0(𝑥) = 0,
and the same source term (2.4) used for the heat and advection–diffusion equation,
also for three different values of the diffusion parameter, 𝜈 = 1, 10−2 and 5× 10−4.
We see that when 𝜈 is large, then the diffusion part dominates and the solution has
similar properties to the solution of the heat equation. If 𝜈 is small and the non-
linear advection part starts playing a dominant role, then the solution is transported
from left to right over a much longer time, as we see in Figure 2.2(b,c), as for
advection–diffusion. However, we see a further very important new phenomenon
in the nonlinear case: the solution shape changes as well, and even with the
smooth source term, very sharp edges are forming in the solution, so-called shock
waves, containing very high-frequency components that travel far in space and
time. In (d) and (h) we use a zero source term but a non-zero initial condition
𝑢0(𝑥) = sin2(8𝜋(1 − 𝑥)2) as for advection–diffusion earlier, and again the small
diffusion parameter 5×10−4. We also see, from the already fine features present in
the high-frequency components of the initial condition, that even sharper edges are
formed in shock waves, and all are transported far in time. Nevertheless, for both
𝜈 large and 𝜈 small, we can still compute the solution for 𝑡 ∈ (1.25, 2.5) before we
obtain the solution earlier in time, because all solution components are eventually
diffused or leave the domain, as in the advection–diffusion case in Figure 2.2(a–d).

In contrast, for periodic boundary conditions, we see in Figure 2.3(e–h) that
our observations from Figure 2.2(e–h) for the advection–diffusion equation are
further accentuated, as soon as the diffusion parameter becomes small: ever finer
information is generated and transported very far in time, through shock waves
that are forming. For successful PinT computation, such high-frequency shock
waves must be transported by a mechanism that propagates them effectively far in
space and time, which is very difficult using a coarse grid, for example. Panel (h),
without source and just a non-zero initial condition, shows the same effect for an
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3. Burgers’ equation with zero Dirichlet boundary conditions (a–d) and
periodic boundary conditions (e–h). In panels (a–c) and (e–g) we use a zero initial
condition, 𝑢0(𝑥) = 0, and the same source term as in Figure 2.1 for the heat equation,
and an ever smaller diffusion parameter 𝜈 = 1, 10−2 and 5×10−4. Panels (d) and (h)
show the solution for zero source term and initial condition 𝑢0(𝑥) = sin2(8𝜋(1−𝑥)2)
with small diffusion 𝜈 = 5 × 10−4.
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(a) (b) (c) (d)

Figure 2.4. Solution of the second-order wave equation, with 𝑐2 = 0.2, zero initial
condition 𝑢0(𝑥) = 0 and the same source term as in Figure 2.1 for (a) Dirichlet,
(b) Neumann and (c) periodic boundary conditions, and (d) the solution with zero
source term and non-zero initial condition 𝑢0(𝑥) = sin2(8𝜋(1 − 𝑥)2).

initial condition transported over very long time: we can no longer precompute the
solution later in time without knowing the solution earlier in time when the diffusion
parameter becomes small. It is therefore even harder to do PinT computations in
such nonlinear problems when 𝜈 → 0, in the hyperbolic limit, where shock waves
are natural in the solutions and all frequency components travel very far in space
and time. Note that again we need periodic boundary conditions and small diffusion
to encounter these difficulties, an important point when testing the performance
of PinT methods on such problems. In the next subsection we will see that for
hyperbolic problems these difficulties already appear, no matter what boundary
conditions are used.

2.4. Second-order wave equation

For hyperbolic problems, we will use the second-order wave equation as our model
problem,

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝑐2𝜕𝑥𝑥𝑢(𝑥, 𝑡) + 𝑔(𝑥, 𝑡) in (0, 1) × (0, 𝑇],
𝑢(𝑥, 0) = 𝑢0(𝑥) in (0, 1),

𝜕𝑡𝑢(𝑥, 0) = 0 in (0, 1),
(2.7)

with a constant wave speed 𝑐 > 0. In Figure 2.4(a–c) we show the solution of
the wave equation with the same source term (2.4) we used before, with Dirichlet,
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Neumann and periodic boundary conditions. In all cases, we observe that for
the wave equation, the solution depends in a complex and detailed manner over
a long time on the various source terms in space and time. In Figure 2.4(d) we
show the solution of the wave equation with zero source term but using the initial
condition 𝑢0(𝑥) = sin2(8𝜋(1 − 𝑥)2) and zero first derivative in time. We see that
the solution of this hyperbolic problem depends in a very detailed manner on all
frequency components present in the initial condition, and this would be the same
for the other boundary conditions as well. This is typical for hyperbolic problems
and all boundary conditions; we only need periodic boundary conditions in the
advection–diffusion and Burgers’ equation case to make this difficulty appear for
small 𝜈, because the advection term is first-order and the transport has a direction.
For the wave equation and other hyperbolic problems, this detailed and long time
propagation in several directions with reflections is already present for Dirichlet
and Neumann boundary conditions. It is this propagation of fine information over a
long time in hyperbolic problems that makes time parallelization more challenging
than for parabolic problems, and requires different PinT techniques to address it.

3. Effective PinT methods for hyperbolic problems
We have seen in Section 2 that parabolic problems have solutions that are rather
local in time (see Figure 2.1), where with Dirichlet conditions all information
is forgotten very rapidly over time, and with Neumann and periodic boundary
conditions only the lowest-frequency component, namely the constant, remains
over a long time. This changes when transport terms are present and become
dominant (see Figures 2.2 and 2.3) and in the hyperbolic limit, and for hyperbolic
problems in general, all frequency components can travel arbitrarily far in space
and time; see Figure 2.4 for the second-order wave equation. PinT methods must
take this into account to be effective. It is interesting that many methods designed
specifically for hyperbolic problems also work well (or even better) for parabolic
problems. An exception is that of the mapped tent pitching methods introduced
at the end of Section 3.2, which use the finite speed of propagation in hyperbolic
problems in their construction. On the other hand, PinT methods designed for
parabolic problems (see Section 4) do not generally perform well for hyperbolic
problems.

3.1. Historical development

We present four PinT methods that have proved effective for hyperbolic problems.
For each method we show the main theoretical properties and demonstrate these
properties using the four PDEs introduced in Section 2.

The first methods are rooted in solving overlapping or non-overlapping space–
time-continuous subproblems, an approach initially proposed for parabolic prob-
lems in Gander (1999) and independently introduced in Giladi and Keller (2002).
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This strategy incorporates elements of both domain decomposition (DD) meth-
ods, a long-established technique for parallel PDE solving going back to Schwarz
(1870), and waveform relaxation (WR) methods, which originated in circuit simu-
lations (Lelarasmee et al. 1982). These methods were developed and analysed both
for parabolic and hyperbolic problems in Gander (1997), and the name Schwarz
waveform relaxation (SWR) methods was coined in Gander et al. (1999). Further
results for nonlinear parabolic problems can be found in Gander (1999) and Gander
and Rohde (2005). Optimized Schwarz waveform relaxation (OSWR) methods
using more effective transmission conditions were developed for parabolic prob-
lems in Gander and Halpern (2007), Bennequin, Gander and Halpern (2009) and
Bennequin, Gander, Gouarin and Halpern (2016), and for hyperbolic problems in
Gander, Halpern and Nataf (2003) and Gander and Halpern (2004); see also Gander,
Lunowa and Rohde (2023c) for nonlinear advection–diffusion equations. The re-
cently developed unmapped tent pitching (UTP) technique (Ciaramella, Gander
and Mazzieri 2023) is based on SWR. There are also Dirichlet–Neumann and
Neumann–Neumann waveform relaxation variants; see Gander, Kwok and Mandal
(2016b, 2021b).

The third method is based on the time parallelization of the integral deferred
correction (IDC) technique. IDC for evolution problems was first introduced in
Böhmer and Stetter (1984), and was later identified in Dutt, Greengard and Rokhlin
(2000) as a specialized time-integrator, which theoretically has the capability to
generate numerical solutions of arbitrarily high order by accurately treating the
associated integral. Revisionist integral deferred correction (RIDC) is one such
technique (Christlieb et al. 2010) that can be used parallel in time, and there is
another recent parallel version (PIDC) from Guibert and Tromeur-Dervout (2007),
which we will introduce in detail in Section 3.3.

The fourth time-parallel method that we will introduce in Section 3.4 is the
ParaExp method, proposed a decade ago by Gander and Güttel (2013), which relies
on a new strategy of separately handling the initial value and source term; see also
Merkel, Niyonzima and Schöps (2017) and Kooij, Botchev and Geurts (2017), and
Gander, Güttel and Petcu (2018a) for a nonlinear variant.

Finally, in Section 3.5, we will present the ParaDiag family of methods. Time-
parallel methods based on diagonalization were first proposed in Maday and
Rønquist (2008) as direct time-parallel solvers, without iteration, and they were
studied in more detail in Gander, Halpern, Ryan and Tran (2016a) for parabolic
problems, with a nonlinear variant in Gander and Halpern (2017), and in Gander,
Halpern, Rannou and Ryan (2019) for hyperbolic problems. Iterative variants then
appeared rapidly, within WR methods (Gander and Wu 2019) or within Parareal
(Gander and Wu 2020). Approximate ParaDiag methods were also used in McDon-
ald et al. (2018) and Liu and Wu (2020) as preconditioners for Krylov methods,
applied directly to the all-at-once system. A comprehensive study of ParaDiag
methods appeared in Gander et al. (2019). Since then, ParaDiag methods have
gained widespread traction in the PinT field, with new techniques enhancing these
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methods; see e.g. Kressner, Massei and Zhu (2023) for a direct ParaDiag technique
using interpolation, and Gander and Palitta (2024) for a new ParaDiag variant
combining the Sherman–Morrison–Woodbury formula and Krylov techniques.

3.2. Schwarz waveform relaxation (SWR) methods

SWR combines the strengths of the classical Schwarz DD method and WR, while
overcoming some of their inherent limitations. In the context of evolution PDEs,
the Schwarz DD method typically involves a uniform implicit time discretization,
followed by the application of the DD technique to solve the resulting elliptic
problems at each time-step sequentially; see e.g. Cai (1991), Meurant (1991) and
Cai (1994). The DD iterations need to converge at each time-step before proceeding
to the next, across all subdomains, and we have to use the same time discretization
across subdomains, which undermines a key advantage of DD methods, namely to
tailor numerical treatments to each subdomain individually.

On the other hand, the classical WR method begins with a system of ODEs, often
obtained from a spatial discretization of an evolution PDE, which is then solved
using a dynamic iteration similar to the Picard iteration but using an appropriate
system partitioning. For instance, in the case of the linear system of ODEs (2.1),
the WR iteration can be expressed as

d𝒖𝑘(𝑡)
d𝑡

− 𝑀𝒖𝑘(𝑡) = 𝑁𝒖𝑘−1(𝑡) + 𝑓 (𝑡), 𝑡 ∈ (0, 𝑇),

where 𝑘 ≥ 1 denotes the iteration index, 𝒖𝑘(0) = 𝒖0 for all 𝑘 ≥ 0, and (𝑀, 𝑁)
represents a consistent splitting of 𝐴 such that 𝐴 = 𝑀 +𝑁 . For Jacobi (diagonal) or
Gauss–Seidel (triangular) type splittings, solving for 𝒖𝑘(𝑡) boils down to solving a
series of scalar ODEs. In the Jacobi case, all these ODEs can be solved in parallel,
making this into a PinT method in the sense that the future of all unknowns is
approximated before the future of connected unknowns is already known. Similarly
in the Gauss–Seidel case, one can obtain such parallelism using red–black or other
colourings. Even more parallelism can be introduced using the cyclic reduction
technique; see Worley (1991), Horton, Vandewalle and Worley (1995) and Simoens
and Vandewalle (2000). However, a significant challenge of WR lies in finding an
effective system splitting to ensure rapid convergence. As remarked by Nevanlinna
(1989, pp. 329, 331):

In practice, one is interested in knowing what subdivisions yield fast convergence for the
iterations . . . The splitting into subsystems is assumed to be given. How to split in such a
way that the coupling remains weak is an important question.

A bad splitting can lead to arbitrarily slow convergence or even divergence, render-
ing WR impractical.

SWR circumvents these limitations by initially decoupling the spatial domain
(rather than performing a spatial discretization first) and then independently solving
the space–time-continuous PDEs on these subdomains, similar to the WR approach.
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This approach allows for the use of tailored space and time discretizations for each
subdomain problem; but more importantly, knowing that the space–time subdomain
problems are coupled for a particular PDE, one can design transmission conditions
which decouple the problems such that the methods converge very rapidly, com-
pletely addressing the difficulty identified by Nevanlinna above. This leads to the
class of optimized Schwarz waveform relaxation (OSWR) methods, which have
been studied for many different types of PDEs; see e.g. Martin (2009) for the shal-
low water equations, Courvoisier and Gander (2013) for the time domain Maxwell
equations, Halpern and Szeftel (2010), Besse and Xing (2017) and Antoine and
Lorin (2017) for Schrödinger equations, Audusse, Dreyfuss and Merlet (2010) for
the primitive equations of the ocean, Antoine and Lorin (2016) for quantum wave
problems, Wu (2017) for fractional diffusion problems, Thery, Pelletier, Lemarié
and Blayo (2022) for the coupled Ekman boundary layer problem, and also the
many references therein. OSWR methods have distinct convergence characteristics
for first-order parabolic problems (such as the advection–diffusion equation (2.5)
and the nonlinear Burgers’ equation (2.6)) compared to second-order hyperbolic
problems such as the wave equation (2.7). In the following, we present these two
types of problems separately.

3.2.1. First-order parabolic problems
For the advection–diffusion equation (2.5) with homogeneous Dirichlet boundary
conditions, 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, and an initial condition, 𝑢(𝑥, 0) = 𝑢0(𝑥), the
OSWR method with the two overlapping subdomains Ω1 ≔ (0, 𝛽𝐿) and Ω2 ≔

(𝛼𝐿, 𝐿), 𝛼 < 𝛽, and Robin transmission conditions is given by
𝜕𝑡𝑢

𝑘
1 (𝑥, 𝑡) + L𝑢𝑘1 (𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ Ω1 × (0, 𝑇],

𝑢𝑘1 (0, 𝑡) = 0,
1
𝑝
𝜕𝑥𝑢

𝑘
1 (𝛽𝐿, 𝑡) + 𝑢𝑘1 (𝛽𝐿, 𝑡) =

1
𝑝
𝜕𝑥𝑢

𝑘−1
2 (𝛽𝐿, 𝑡) + 𝑢𝑘−1

2 (𝛽𝐿, 𝑡),
𝜕𝑡𝑢

𝑘
2 (𝑥, 𝑡) + L𝑢𝑘2 (𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ Ω2 × (0, 𝑇],

1
𝑝
𝜕𝑥𝑢

𝑘
2 (𝛼𝐿, 𝑡) − 𝑢𝑘2 (𝛼𝐿, 𝑡) =

1
𝑝
𝜕𝑥𝑢

𝑘−1
1 (𝛼𝐿, 𝑡) − 𝑢𝑘−1

1 (𝛼𝐿, 𝑡),

𝑢𝑘2 (𝐿, 𝑡) = 0,

(3.1)

withL = 𝜕𝑥−𝜈𝜕𝑥𝑥 , and initial conditions 𝑢𝑘1 (𝑥, 0) = 𝑢0(𝑥) for 𝑥 ∈ Ω1 and 𝑢𝑘2 (𝑥, 0) =
𝑢0(𝑥) for 𝑥 ∈ Ω2. Here, 𝑘 ≥ 1 represents the iteration index, {𝑢0

1(𝛼𝐿, 𝑡), 𝑢0(𝛽𝐿, 𝑡)}
are initial guesses for 𝑡 ∈ (0, 𝑇] and 0 < 𝛼 ≤ 𝛽 < 1, and (𝛽 − 𝛼)𝐿 denotes the
overlap size. We use Robin transmission conditions (TCs) in (3.1) with parameter
𝑝 > 0 at 𝑥 = 𝛼𝐿 and 𝑥 = 𝛽𝐿 to transmit information between the subdomains,
and the classical Dirichlet TCs correspond to the limit 𝑝 → ∞, i.e. 𝑢𝑘1 (𝛽𝐿, 𝑡) =

𝑢𝑘−1
2 (𝛽𝐿, 𝑡) and 𝑢𝑘2 (𝛼𝐿, 𝑡) = 𝑢𝑘−1

1 (𝛼𝐿, 𝑡). It is straightforward to generalize this
two-subdomain case in (3.1) to a multi-subdomain scenario, and the OSWR method
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for nonlinear problems is obtained by simply replacing the linear operator L with
the corresponding nonlinear one in (3.1).

For the OSWR iteration given in (3.1), the optimized choice of the parameter 𝑝
and the corresponding convergence factor were analysed by Gander and Halpern
(2007) under the simplified assumption that the space domain is unbounded.

Theorem 3.1 (Gander and Halpern 2007). For OSWR (3.1) withL = 𝜕𝑥−𝜈𝜕𝑥𝑥
and an overlap size of 𝑙 > 0, the optimized choice for the Robin parameter, denoted
by 𝑝∗, is given by 𝑝∗ = 𝑝∗𝑠/𝜈, where 𝑝∗ is the unique solution of the nonlinear
equation

𝑅0(𝑦0, 𝑝
∗, 𝑦0) = 𝑅0(�̄�(𝑦0, 𝑝

∗), 𝑝∗, 𝑦0), (3.2a)

provided that 𝑦0 ≔ 𝑙/𝜈 < 𝑦𝑐, where 𝑦𝑐 is a constant equal to 1.618386576 . . . , and

𝑅0(𝑦, 𝑝, 𝑦0) =
(𝑦 − 𝑝)2 + 𝑦2 − 𝑦2

0

(𝑦 + 𝑝)2 + 𝑦2 − 𝑦2
0

e−𝑦 ,

�̄�(𝑦0, 𝑝) =

√√√
𝑦2

0 + 2𝑝 +
√︃
𝑝(−𝑝3 − 4𝑝2 + (4 + 2𝑦2

0)𝑝 + 8𝑦2
0)

2
.

The function 𝑅0(𝑦, 𝑝, 𝑦0) is the convergence factor of the OSWR iteration, obtained
in Fourier space, where 𝑦 corresponds to a single Fourier mode 𝜔 ∈ [𝜋/𝑇, 𝜋/Δ𝑡],
i.e. 𝑦 = 𝑙𝜔/𝜈.

If, on the other hand, 𝑦0 ≥ 𝑦𝑐, then 𝑝∗ is the unique solution of

𝑦0 = 𝑝∗

√︄
𝑝∗

4 + 𝑝∗
. (3.2b)

With the optimized Robin parameter 𝑝∗, the convergence factor 𝜌 over all relevant
Fourier modes can be bounded as

𝜌 ≔ max𝑦∈[𝑦min,𝑦max ]𝑅0(𝑦, 𝑝∗, 𝑦0) ≤ 𝑅0(�̄�(𝑦0, 𝑝
∗), 𝑝∗, 𝑦0), (3.2c)

where

𝑦min =
𝑙𝜋

𝜈𝑇
and 𝑦max =

𝑙𝜋

𝜈Δ𝑡
.

As we mentioned above, classical SWR with Dirichlet TCs corresponds to the
case 𝑝 = ∞ in (3.1). By setting 𝑝 = ∞ in the function 𝑅0, we obtain

𝜌 ≤ e−𝑦min = exp
(
− 𝑙𝜋

𝜈𝑇

)
, (3.3)

which was analysed in Gander and Halpern (2007, Section 3).
We now show a numerical experiment to illustrate OSWR. We discretize the

advection–diffusion operator L using a centred finite difference method that is
backward Euler in time. Let 𝐿 = 8.2, 𝑇 = 5, Δ𝑡 = 0.01, Δ𝑥 = 0.02 and 𝑙 = 2Δ𝑥.
The initial value for the advection–diffusion equation is 𝑢0(𝑥) = e−10(𝑥−𝐿/2)2 .
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Figure 3.1. (a) The theoretical convergence factor of the OSWR method when
applied to the advection–diffusion equation (2.5) decreases when the diffusive
parameter 𝜈 decreases. (b) The iteration, measured in a four-subdomain numerical
experiment with tolerance of 10−8, supports this prediction very well.

In Figure 3.1(a) we show the theoretical convergence factor of the SWR method
with Dirichlet and optimized Robin TCs as a function of the diffusion parameter
𝜈. We see that the convergence factor becomes small when the advection term
becomes dominant, and the method converges ever more rapidly. To test this
numerically, we decompose the spatial domain (0, 𝐿) into four subdomains and
solve the advection–diffusion equation using the OSWR method for several values
of the parameter 𝜈. The method starts from a random initial guess, and we stop the
iteration when the error between the iterate and the converged solution is less than
10−8. The iteration number for Dirichlet and optimized Robin TCs is shown in
Figure 3.1(b), and we see that indeed fewer iterations are required when 𝜈 is small,
as predicted by the theoretical results in Figure 3.1(a).

For a given 𝜈, however, the discretized OSWR method with four subdomains
may not converge as rapidly as predicted by the theoretical convergence factor 𝜌

obtained for a two-subdomain decomposition at the continuous level on an unboun-
ded domain. For instance, when 𝜈 = 0.1, the iteration numbers shown in Figure 3.1
are 92 for Dirichlet TCs and 28 for Robin TCs, but iteration numbers predicted by
𝜌 are 32 for Dirichlet TCs and 4 for Robin TCs, which are significantly smaller.
The reason for this discrepancy is that the convergence factor 𝜌 in Theorem 3.1 is
analysed for the two-subdomain case at the space–time-continuous level on an un-
bounded domain, and we tested the discretized SWR method in the four-subdomain
case on a bounded domain. Convergence analyses of SWR with Dirichlet TCs in
the multi-subdomain case can be found in Gander and Stuart (1998) and Wu, Huang
and Huang (2012). However, a comprehensive convergence analysis for Robin TCs
in the multi-subdomain case is still lacking. For Robin TCs, the convergence of
SWR in the two-subdomain case at the semi-discrete level can be found in Wu
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and Al-Khaleel (2014); see also the detailed studies in Gander, Halpern, Hubert
and Krell (2020, 2021a) for the steady-state case between continuous and discrete
analyses on bounded and unbounded domains.

In addition to Dirichlet and Robin TCs, there are efforts to further accelerate
OSWR using Ventcel TCs (Bennequin et al. 2016). Essentially, these TCs serve as
local approximations of the optimal TCs analysed in Fourier (or Laplace) space in
Gander and Halpern (2007, Section 3), namely

𝜕𝑥 −
1

2𝜈
F−1(1 +

√
1 + i4𝜈𝜔),

where i =
√
−1 and F−1 denotes the inverse Fourier transform with 𝜔 representing

the Fourier mode. In an asymptotic sense, i.e. 𝑙 = 𝐶1Δ𝑥, Δ𝑡 = 𝐶1Δ𝑥
𝛽 , and with

Δ𝑥 being small, the convergence factor 𝜌 satisfies 𝜌 = 1 − 𝑂(Δ𝑥𝛾), where 𝛾 > 0
is a quantity that depends on 𝛽; see Gander and Halpern (2007) and Bennequin
et al. (2009, 2016). Convolution TCs analysed in Wu and Xu (2017) result in a
mesh-independent constant convergence factor 𝜌 = 1 − 𝐶, where 𝐶 ∈ (0, 1). This
is particularly useful for handling evolution PDEs with non-local terms, such as
Volterra partial integro-differential equations.

3.2.2. Second-order hyperbolic problems
Unlike for first-order parabolic problems, for second-order hyperbolic problems
(e.g. the wave equation (2.7)), the SWR method converges in a finite number of
iterations, even when using simple Dirichlet transmission conditions. Applying
SWR to the wave equation for a two-subdomain decomposition leads to the algo-
rithm 

𝜕𝑡𝑡𝑢
𝑘
1 (𝑥, 𝑡) = 𝑐2𝜕𝑥𝑥𝑢

𝑘
1 (𝑥, 𝑡) + 𝑔(𝑥, 𝑡) (𝑥, 𝑡) ∈ Ω1 × (0, 𝑇],

𝑢𝑘1 (𝑥, 0) = 𝑢0(𝑥), 𝜕𝑡𝑢𝑘1 (𝑥, 0) = �̃�0(𝑥) 𝑥 ∈ (0, 𝛽𝐿),
𝑢𝑘1 (0, 𝑡) = 0, 𝑢𝑘1 (𝛽𝐿, 𝑡) = 𝑢𝑘−1

2 (𝛽𝐿, 𝑡) 𝑡 ∈ (0, 𝑇),
𝜕𝑡𝑡𝑢

𝑘
2 (𝑥, 𝑡) = 𝑐2𝜕𝑥𝑥𝑢

𝑘
2 (𝑥, 𝑡) + 𝑔(𝑥, 𝑡) (𝑥, 𝑡) ∈ Ω2 × (0, 𝑇],

𝑢𝑘2 (𝑥, 0) = 𝑢0(𝑥), 𝜕𝑡𝑢𝑘2 (𝑥, 0) = �̃�0(𝑥) 𝑥 ∈ (𝛼𝐿, 𝐿),
𝑢𝑘2 (𝛼𝐿, 𝑡) = 𝑢𝑘−1

1 (𝛼𝐿, 𝑡), 𝑢𝑘2 (𝐿, 𝑡) = 0 𝑡 ∈ (0, 𝑇),

(3.4)

where 𝑐 > 0 and 0 < 𝛼 < 𝛽 < 1.

Theorem 3.2 (Gander 1997, Theorem 6.3.3). For the SWR method (3.4), the
errors at the interfaces 𝑥 = 𝛼𝐿 and 𝑥 = 𝛽𝐿 become zero after 𝑘 iterations, i.e.
𝑢𝑘1 (𝛼𝐿, 𝑡) − 𝑢(𝛼𝐿, 𝑡) = 0 and 𝑢𝑘2 (𝛽𝐿, 𝑡) − 𝑢(𝛽𝐿, 𝑡) = 0, provided that

𝑘 >
𝑇𝑐

𝛽 − 𝛼
.

The reason for this convergence result lies in the finite speed of propagation
inherent to hyperbolic problems. By exploiting this property, similar results can be

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000072
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 17 Jul 2025 at 00:34:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000072
https://www.cambridge.org/core


Time parallelization for hyperbolic and parabolic problems 403

𝑘 = 1

regions of redundant computations

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑇1

𝑇2

𝑇3

𝑇4

(a)

𝑘 = 2

regions of redundant computations

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑇1

𝑇2

𝑇3

𝑇4

(b)

𝑘 = 3

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑇1

𝑇2

𝑇3

𝑇4

(c)

𝑘 = 4

Ω1 Ω3 Ω5

Ω2 Ω4
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑇1

𝑇2

𝑇3

𝑇4

(d)

Figure 3.2. Illustration of red–black SWR with generous overlap.

achieved in the case of many subdomains, as well as for more general decompos-
itions in higher dimensions (Gander and Halpern 2004) and for other hyperbolic
equations; see e.g. Gander and Rohde (2005) for one-dimensional nonlinear con-
servation laws.

Theorem 3.2 shows a very important property of SWR applied to hyperbolic
problems, already indicated in Gander et al. (2003, Figure 3.1): the subdomains
are computing the exact solution in the cone within the subdomain which is only
influenced by the initial condition, and not by the transmission conditions where
possibly incorrect data is still coming from the neighbouring subdomains. Using
this property, one can choose the space–time subdomains in SWR applied to
hyperbolic problems in order to avoid iterations and advance directly with space–
time subdomain solves in parallel. To illustrate this, it is best to consider again
the one-dimensional wave equation (2.7) and a red–black domain decomposition
with generous overlap, as was done in Ciaramella et al. (2023); see Figure 3.2. In
panel (a) we solve the wave equation in parallel within the three red subdomains
in space–time, i.e. in Ω 𝑗 × (0, 𝑇1) for 𝑗 = 1, 3, 5. We use arbitrary interface data at
𝑥 = 𝑥2 and 𝑥 = 𝑥4 because the solution there is not yet known. Due to the finite
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speed of propagation, we obtain the exact solution within triangular tents in space–
time, bounded by the characteristic lines of the wave equation. These tents are
marked in blue in panel (b), and the solution is also correct in two additional small
zones on the left and right, since the outer boundary conditions are known. In this
first red solve, SWR also computes a not yet correct approximation in the regions
above the correct tents, as indicated in (a): SWR performs redundant computations,
as advocated by Nievergelt in order to obtain more parallelism. In the next step of
this red–black SWR, we compute wave equation solutions in the black subdomains
Ω 𝑗 × (0, 𝑇2) for 𝑗 = 2, 4 in space–time, as indicated in (b). Since we already
have the correct solution in the blue region, the exact solution is now obtained in
the two rhomboid blue tents indicated in (c), again at the cost of some redundant
computations. Next we again solve in the red subdomains, but now further in time
in the interval (𝑇1, 𝑇3). Continuing this red–black SWR algorithm, we obtain the
exact solution further and further advanced in time, as indicated in (d).

This red–black SWR algorithm is an effective and simple way to implement one
of the most powerful current space–time solvers for hyperbolic problems, namely
the mapped tent pitching (MTP) algorithm from Gopalakrishnan, Schöberl and
Wintersteiger (2017); see Gopalakrishnan, Hochsteger, Schöberl and Wintersteiger
(2020) for its application to time domain Maxwell equations. In MTP, we map
the tent shape which we have seen in red–black SWR to space–time cylinders
in which the solution is then computed by classical time-stepping, and then the
solution is mapped back, thus avoiding redundant computations. However, we
have the extra cost of computing the mapping, and also after the mapping the
computational domains have the same size as the space–time subdomains in the red–
black SWR above, and thus comparable computational cost. In addition, in MTP,
order reduction was observed due to the mapping, and specialized time-integrators
were developed and need to be used to avoid this. In contrast, in red–black SWR,
now also called unmapped tent pitching (UTP), no order reduction occurs, and red–
black SWR can be very easily implemented, even for higher spatial dimensions,
using restricted additive Schwarz (RAS) techniques from DD directly applied to the
all-at-once space–time system; see Gander (2008) for an explanation. In Figure 3.3
we show an example of using red–black SWR or equivalently UTP to solve our wave
equation model problem (2.7), whose solution is shown in Figure 2.4(d). We see
that without knowing anything about the tent structure, UTP constructs the exact
solution in the red and black tents, and advances exactly like MTP. Note that UTP
can also be just as easily applied to nonlinear hyperbolic problems, and if we do
not know the tent height, it suffices to look at the residual in the computed solution,
which naturally indicates the tent height by how far the residual has become zero
in time, and we can adapt the time domain length 𝑇𝑖 − 𝑇𝑖−1 accordingly!

Clearly the original MTP is not appropriate for parabolic problems, since for
such problems the speed of propagation is infinite, and hence there are no tents in
which the solution would be correct. However, SWR and thus UTP can also be very
effective for parabolic problems, especially the optimized SWR variants (see e.g.
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(a) (b) (c) (d)

Figure 3.3. Red–black SWR or equivalently UTP applied to the second-order wave
equation: (a) initial error with random initial guess, (b) fourth red iteration, (c)
eighth black iteration and (d) 12th red iteration.

Gander and Halpern 2007, Bennequin et al. 2009), and for slightly diffusive prob-
lems such as our advection-dominated diffusion model problem we could consider
applying UTP, maybe with one or two additional iterations in each time slab.

3.3. Time-parallel IDC

Integral deferred correction (IDC), introduced by Dutt et al. (2000), serves as a
technique to obtain high-order numerical solutions through an iterative correction
procedure. While the original IDC is sequential in time, there are two more recent
techniques to parallelize IDC in time: the pipeline IDC (PIDC) method by Guibert
and Tromeur-Dervout (2007) and the revisionist IDC (RIDC) method by Christlieb
et al. (2010). Both PIDC and RIDC fundamentally differ from the original IDC,
but to understand them it is necessary to explain first how IDC works. To this end,
we rewrite the nonlinear ODE (2.2) as an integral equation:

𝒖(𝑡) = 𝒖0 +
∫ 𝑡

0
𝑓 (𝒖(𝜏), 𝜏) d𝜏, 𝑡 ∈ (0, 𝑇] . (3.5)

Suppose we already have a rough approximation �̃�(𝑡) of the desired solution 𝒖(𝑡),
for example by simply setting �̃�(𝑡) ≡ 𝒖0 for 𝑡 ∈ [0, 𝑇] or by solving the ODE
with lower accuracy. To improve the approximation �̃�(𝑡), we introduce the error
𝒆(𝑡) ≔ 𝒖(𝑡) − �̃�(𝑡), and the residual

𝒓(𝑡) ≔ 𝒖0 +
∫ 𝑡

0
𝑓 (�̃�(𝜏), 𝜏) d𝜏 − �̃�(𝑡), 𝑡 ∈ (0, 𝑇] . (3.6)
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By substituting 𝒖(𝑡) = 𝒆(𝑡) + �̃�(𝑡) into (3.5) and using (3.6), we can express the
error 𝒆(𝑡) in terms of the residual 𝒓(𝑡):

𝒆(𝑡) = 𝒖0 +
∫ 𝑡

0
𝑓 (�̃�(𝜏) + 𝒆(𝜏), 𝜏) d𝜏 − �̃�(𝑡)

= 𝒓(𝑡) +
∫ 𝑡

0
[ 𝑓 (�̃�(𝜏) + 𝒆(𝜏), 𝜏) − 𝑓 (�̃�(𝜏), 𝜏)] d𝜏, 𝑡 ∈ (0, 𝑇] . (3.7)

Taking a derivative, this is equivalent to the differential equation

𝒆′(𝑡) − 𝒓′(𝑡) = 𝑓 (�̃�(𝑡) + 𝒆(𝑡), 𝑡) − 𝑓 (�̃�(𝑡), 𝑡), 𝑡 ∈ (0, 𝑇] . (3.8)

Let the current approximate solution �̃� be known at specific time points

0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑀 = 𝑇, {𝒖𝑘
𝑚} ≔ �̃�(𝑡𝑚).

The procedure to obtain the next approximate solution {𝒖𝑘+1
𝑚 } involves discretizing

(3.8) and using a quadrature rule to approximate 𝒓(𝑡) at the discrete time nodes.
Applying the linear-𝜃 method (with 𝜃 ∈ [0, 1]) to (3.8) yields

𝒆𝑚+1 − 𝒆𝑚 = 𝒓𝑚+1 − 𝒓𝑚 + Δ𝑡𝑚(1 − 𝜃)
[
𝑓
(
𝒖𝑘+1
𝑚 , 𝑡𝑚

)
− 𝑓
(
𝒖𝑘
𝑚, 𝑡𝑚

)]
+ Δ𝑡𝑚𝜃

[
𝑓
(
𝒖𝑘+1
𝑚+1, 𝑡𝑚+1

)
− 𝑓
(
𝒖𝑘
𝑚+1, 𝑡𝑚+1

)]
, (3.9)

where 𝑚 = 0, 1, . . . , 𝑀 − 1 and Δ𝑡𝑚 = 𝑡𝑚+1 − 𝑡𝑚. From (3.6),

𝒓𝑚+1 − 𝒓𝑚 =

∫ 𝑡𝑚+1

𝑡𝑚

𝑓 (𝒖𝑘(𝜏), 𝜏) d𝜏 −
(
𝒖𝑘
𝑚+1 − 𝒖𝑘

𝑚

)
.

Substituting this into (3.9) and then using 𝒖𝑘+1
𝑚 = 𝒖𝑘

𝑚 + 𝒆𝑘𝑚, we obtain

𝒖𝑘+1
𝑚+1 = 𝒖𝑘+1

𝑚 + Δ𝑡𝑚(1 − 𝜃)
[
𝑓
(
𝒖𝑘+1
𝑚 , 𝑡𝑚

)
− 𝑓
(
𝒖𝑘
𝑚, 𝑡𝑚

)]
+ Δ𝑡𝑚𝜃

[
𝑓
(
𝒖𝑘+1
𝑚+1, 𝑡𝑚+1

)
− 𝑓
(
𝒖𝑘
𝑚+1, 𝑡𝑚+1

)]
+
∫ 𝑡𝑚+1

𝑡𝑚

𝑓 (𝒖𝑘(𝜏), 𝜏) d𝜏,

where the integral is computed using a quadrature rule:∫ 𝑡𝑚+1

𝑡𝑚

𝑓 (𝒖𝑘(𝜏), 𝜏) d𝜏 ≈
𝑀∑︁
𝑗=1

𝜔𝑚, 𝑗 𝑓
(
𝒖𝑘
𝑗 , 𝑡 𝑗
)
. (3.10a)

The quadrature weights are determined by integrating the Lagrange polynomials,

𝜔𝑚, 𝑗 =

∫ 𝑡𝑚+1

𝑡𝑚

(
𝑀∏

𝑖=1,𝑖≠ 𝑗

𝜏 − 𝑡𝑖

𝑡𝑠 − 𝑡𝑖

)
d𝜏. (3.10b)
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In summary, with the discrete time points {𝑡𝑚}𝑀𝑚=0 spanning the time interval [0, 𝑇],
IDC generates the approximate solution as

𝒖𝑘+1
𝑚+1 = 𝒖𝑘+1

𝑚 + Δ𝑡𝑚(1 − 𝜃)
[
𝑓
(
𝒖𝑘+1
𝑚 , 𝑡𝑚

)
− 𝑓
(
𝒖𝑘
𝑚, 𝑡𝑚

)]
+ Δ𝑡𝑚𝜃

[
𝑓
(
𝒖𝑘+1
𝑚+1, 𝑡𝑚+1

)
− 𝑓
(
𝒖𝑘
𝑚+1, 𝑡𝑚+1

)]
+

𝑀∑︁
𝑗=1

𝜔𝑚, 𝑗 𝑓
(
𝒖𝑘
𝑗 , 𝑡 𝑗
)
, (3.11)

where 𝑘 = 0, 1, . . . , 𝑘max − 1, and for each correction index 𝑘 we sweep from
left to right, i.e. 𝑚 = 0, 1, . . . , 𝑀 − 1. The choice of quadrature rule determines
the maximum order of accuracy achievable in practice. If we use 𝑀 uniformly
distributed nodes with distance Δ𝑡, the maximal order of accuracy is of 𝑂(Δ𝑡𝑀 )
and, more specifically, we have the following result.

Theorem 3.3 (Dutt et al. 2000). Suppose the time-integrator is of order 𝑝, such
as 𝑝 = 1 for 𝜃 = 1 (backward Euler) and 𝑝 = 2 for 𝜃 = 1

2 (trapezoidal rule)
in (3.11). Then the approximate solution {𝒖𝑘

𝑚} after 𝑘 corrections is of order
𝑂(Δ𝑡min{𝑀,(𝑘+1)𝑝}).

The original IDC method (Dutt et al. 2000) used Gauss nodes for the quad-
rature rule, resulting in a higher maximal order of accuracy. For instance, using
Gauss–Lobatto nodes achieves an order of 2𝐽 − 1. This IDC variant is called spec-
tral deferred correction (SDC) and serves as the key component of the PFASST
algorithm, introduced in Section 4.3 below.

For long-time computations, where 𝑇 is large, creating a uniformly high-order
numerical approximation across the entire time interval is challenging, because it
is difficult to accurately approximate a function over a large interval with a single
high-order polynomial. In such scenarios it is natural to segment the time interval
[0, 𝑇] into multiple windows, denoted by {𝐼𝑛 ≔ [𝑇𝑛−1, 𝑇𝑛]}𝑁𝑡

𝑛=1, with 𝑇0 = 0 and
𝑇𝑁𝑡

= 𝑇 . Then IDC can be applied to each window individually. Within each time
window, a lower-order polynomial often provides precise quadrature, especially
when the window size is small. However, this process is entirely sequential, since
the computations for the (𝑛 + 1)th window 𝐼𝑛+1 must await the completion of com-
putations for 𝐼𝑛. This dependence arises because the initial value for 𝐼𝑛+1 remains
unknown until the preceding window’s computations are finalized. Additionally,
within each time window, we use a basic IDC and the computation proceeds step
by step.

3.3.1. Pipeline IDC (PIDC)
The first parallel version of IDC, known as PIDC, was introduced in Guibert and
Tromeur-Dervout (2007). PIDC uses a pipeline parallelization approach for IDC.
It is based on a simple concept applicable to any time evolution computation,
already proposed by Womble (1990). Specifically, the computation for the next
window 𝐼𝑛+1 = [𝑇𝑛, 𝑇𝑛+1] can start when a preliminary initial value from the
current computation on 𝐼𝑛 = [𝑇𝑛−1, 𝑇𝑛] at 𝑡 = 𝑇𝑛 becomes available. For instance,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4. In PIDC with 𝑘max = 4, the sweeps on the four time windows can run
simultaneously (e,f) once the initialization phase in the first four windows (a–d) is
completed. The black dashed lines represent sweep histories, while the red solid
lines marked with a red circle indicate current sweeps run in parallel. The black
solid lines show the exact solution.

following the first sweep on 𝐼𝑛, an approximation 𝒖1
𝑛,𝑀

at 𝑡 = 𝑇𝑛, i.e. the rightmost
solution on window 𝐼𝑛 after one sweep, is obtained, and we can compute the first
sweep on 𝐼𝑛+1 using 𝒖1

𝑛,𝑀
as the initial value at the same time as performing

the second sweep on 𝐼𝑛. After this computation, we can already start on 𝐼𝑛+2
while continuing on 𝐼𝑛+1 and 𝐼𝑛, computing three sweeps in parallel. In general,
for 𝑁𝑡 time windows, when conducting the 𝑘th sweep on the 𝑛th window 𝐼𝑛, we
simultaneously perform sweep 𝑘 − 1 on 𝐼𝑛+1, sweep 𝑘 − 2 on 𝐼𝑛+2, and so on, up
to the first sweep on 𝐼𝑛+𝑘−1. This procedure is illustrated in Figure 3.4 with 𝑀 = 6
and 𝑘max = 4, where the first four sweeps represent the initial state. Following
this stage, sweeps on 𝐼𝑛, 𝐼𝑛+1, 𝐼𝑛+2, and 𝐼𝑛+3 are executed in parallel. On 𝐼𝑛
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(with 𝑛 ≥ 1), because each sweep starts from a rough and changing initial value,
there is no guarantee that the accuracy of the generated solution will increase as we
proceed with the corrections. We illustrate this point by applying IDC and PIDC to
the advection–diffusion equation (2.5) with two values of the diffusion parameter,
𝜈 = 1 and 𝜈 = 10−3. We consider periodic boundary conditions and discretize with
centred finite differences with mesh size Δ𝑥 = 1

64 , which leads to the linear system
of ODEs (2.1), i.e. 𝒖′(𝑡) = 𝐴𝒖(𝑡) with

𝐴 =
𝜈

Δ𝑥2 𝐴xx −
1

2Δ𝑥
𝐴x,

where
𝜈

Δ𝑥2 𝐴xx ≈ 𝜈𝜕𝑥𝑥 ,
1

2Δ𝑥
𝐴x ≈ 𝜕𝑥

are the discretization matrices given by

𝐴xx =



−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2


, 𝐴x =



0 1 −1
−1 0 1

. . .
. . .

. . .

−1 0 1
1 −1 0


. (3.12)

Let 𝑇 = 3 and the window size be Δ𝑇 = 1
10 . Then, using backward Euler as

time-integrator, Figure 3.5 shows the maximal relative error for each time window
for IDC and PIDC with 𝑀 = 5, namely

err𝑘𝑛 =
max𝑚 ∥𝒖ref

𝑛,𝑚 − 𝒖𝑘
𝑛,𝑚∥∞

max𝑛,𝑚 ∥𝒖ref
𝑛,𝑚∥∞

,

where the reference solution 𝒖ref
𝑛,𝑚 is computed by the built-in solver ODE45 in

MATLAB, using for both the relative and absolute tolerance 1e-13. In each panel,
for both IDC and PIDC, we show the initial error and the errors after 1 and 2
sweeps. The initial guess on the (𝑛 + 1)th window 𝐼𝑛+1 = [𝑇𝑛, 𝑇𝑛+1] is fixed simply
as 𝒖0

𝑛+1,𝑚 ≡ 𝒖1
𝑛,𝑀

for 𝑗 = 0, 1, . . . , 𝑀 .
The results in Figure 3.5 show that for good performance of IDC and PIDC, the

solution of the problem needs to be regular. In the first row, we used the source
function 𝑔(𝑥, 𝑡) from (2.4) with parameter 𝜎 = 1000, which implies a 𝛿-function
type source, such that the solution is not regular enough. We see in panel (a) that
both IDC and PIDC perform similarly, and after the first correction the errors are not
further reduced, the solution is not regular enough for a higher-order approximation
to perform well. In panel (b) we see that when the diffusion is becoming small,
the improvement of the first IDC iteration is much worse than in (a), and a further
iteration does not help much either, and similarly for PIDC. In panel (c) we see that
if we use a very regular source, (2.4) with parameter 𝜎 = 5, and thus the solution
has enough regularity, both IDC and PIDC now improve for large diffusion in
the second iteration as well, and PIDC is comparable to IDC. However, for small
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Figure 3.5. Maximum relative error on each time window for original IDC and
its parallel version PIDC for the advection–diffusion equation (2.5) with source
function 𝑔(𝑥, 𝑡) in (2.4) with 𝜎 = 1000 (low regularity, a,b) and 𝜎 = 5 (higher
regularity, c,d), and large diffusion parameter (a,c) and small diffusion parameter
(b,d). The legend in (a) is also valid for the other panels.

diffusion, in panel (d), again performance is not as good, and PIDC clearly performs
less well at the second iteration compared to IDC. These results indicate that for
hyperbolic problems, if the solution is not regular enough, PIDC will not be very
suitable for PinT computations.

3.3.2. Revisionist IDC (RIDC)
The RIDC method proposed by Christlieb et al. (2010) uses a sliding IDC interval
as the main new idea for more fine-grained parallelization. To do so, consider a
quadrature rule with 𝑀 equidistant nodes. In RIDC, a first processor computes the
initial approximation using a low-order time-stepper, as in IDC, but once it arrives
at the end of the IDC interval after 𝑀 steps, it does not stop: it just continues
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Figure 3.6. Maximum relative error on each time window for original IDC and its
parallel version RIDC for the advection–diffusion equation (2.5) with source term
𝑔(𝑥, 𝑡) in (2.4) and initial condition 𝑢(𝑥, 0) = 0.

progressing in time, computing step 𝑀 + 1, 𝑀 + 2 and so on. With the first
𝑀 values of the first processor available, the second processor now has enough
information to start the first IDC correction. Once it arrives at the end of the first
IDC interval computing the correction for the 𝑀th step, the third processor can
start, but the second processor does not stop: it just continues by moving its IDC
interval and associated quadrature formula one fine time-step to the right, that is,
instead of using the approximations from steps 1, 2, . . . , 𝑀 of the first processor, it
considers the approximations from steps 2, 3, . . . , 𝑀 + 1 of the first processor as its
IDC interval and quadrature nodes, and uses these to compute its approximation for
step (𝑀+1). And then it considers the approximations from steps 3, 4, . . . , 𝑀+2 of
the first processor as its IDC interval, and uses these as quadrature nodes to compute
step 𝑀+2, and so on. Similarly, the third processor will also continue with a sliding
IDC interval, and so on. Like PIDC, RIDC needs regularity to be effective, since
it is a high-order approximation technique, and thus for hyperbolic problems in
the case of low-regularity solutions, RIDC risks not being very effective for PinT
computations. This is illustrated in Figure 3.6, where we apply IDC and RIDC to
the advection–diffusion equation (2.5) with the same data used for Figure 3.5.
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Figure 3.7. Two steps in the ParaExp solver.

3.4. ParaExp

The fourth time-parallel method we want to present is the ParaExp algorithm
(Gander and Güttel 2013), which is a direct time-parallel method that solves lin-
ear problems such as (2.1), which is the semi-discrete version of PDEs like the
advection–diffusion equation (2.5) or the wave equation (2.7); see also Merkel
et al. (2017) and Kooij et al. (2017). ParaExp uses special approximations of the
matrix exponential function, and there are also other such techniques, like REXI
(Schreiber, Peixoto, Haut and Wingate 2018); see also the early PinT methods
based on Laplace transforms REXI (Schreiber et al. 2018).

ParaExp is based on a time decomposition, and performs two steps in order to
construct the solution. First, on each time interval, the equation is solved in parallel
with a source term but zero initial condition (red problems in Figure 3.7),

𝒗′𝑛(𝑡) = 𝐴𝒗𝑛(𝑡) + 𝒈(𝑡), 𝑡 ∈ (𝑇𝑛−1, 𝑇𝑛], 𝒗𝑛(𝑇𝑛−1) = 0, (3.13)

where 𝑛 = 1, 2, . . . , 𝑁𝑡 and 𝑇𝑁𝑡
= 𝑇 . We then solve in parallel the linear equation

(2.1) without source terms (blue problems in Figure 3.7), using as initial conditions
the results from (3.13),

𝒘′
𝑛(𝑡) = 𝐴𝒘𝑛(𝑡), 𝑡 ∈ (𝑇𝑛−1, 𝑇], 𝒘𝑛(𝑇𝑛−1) = 𝒗𝑛−1(𝑇𝑛−1), (3.14)

where 𝑛 = 1, 2, . . . , 𝑁𝑡 and 𝒗0(𝑇0) = 𝒖0. The exact solution 𝒖(𝑡) can then be
constructed by linearity from the decoupled red and blue solutions,

𝒖(𝑡) = 𝒗𝑛(𝑡) +
𝑛∑︁
𝑗=1

𝒘 𝑗(𝑡), 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛], 𝑛 = 1, 2, . . . , 𝑁𝑡 , (3.15)

as one can see as follows: for 𝑛 = 1, by adding (3.13) to (3.14) we have

(𝒗1(𝑡) + 𝒘1(𝑡))′ = 𝐴(𝒗1(𝑡) + 𝒘1(𝑡)) + 𝒈(𝑡), 𝑡 ∈ (𝑇0, 𝑇1], (𝒗1(0) + 𝒘1(0)) = 𝒖0.

This proves (3.15) for 𝑛 = 1. Now, suppose (3.15) holds for 𝑛, and we thus have

𝒖(𝑇𝑛) = 𝒗𝑛(𝑇𝑛) +
𝑛∑︁
𝑗=1

𝒘 𝑗(𝑇𝑛).
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Then, in the next time interval [𝑇𝑛, 𝑇𝑛+1], since 𝒘𝑛+1(𝑇𝑛) = 𝒗𝑛(𝑇𝑛), we have

𝒖(𝑇𝑛) = 𝒘𝑛+1(𝑇𝑛) +
𝑛∑︁
𝑗=1

𝒘 𝑗(𝑇𝑛) =
𝑛+1∑︁
𝑗=1

𝒘 𝑗(𝑇𝑛).

Now, the function 𝒘(𝑡) consisting of the first 𝑛 + 1 blue solutions, that is, 𝒘(𝑡) =∑𝑛+1
𝑗=1 𝒘 𝑗(𝑡) satisfies 𝒘′(𝑡) = 𝐴𝒘(𝑡) for 𝑡 ∈ (𝑇𝑛, 𝑇𝑛+1] and 𝒘(𝑇𝑛) = 𝒖(𝑇𝑛), and hence

𝒘(𝑡)+𝒗𝑛+1(𝑡) satisfies the underlying problem (2.1) for 𝑡 ∈ [𝑇𝑛, 𝑇𝑛+1], which proves
(3.15) for 𝑛 + 1.

As illustrated in Figure 3.7, the computation of the red and blue solutions can
be done in parallel for all time intervals. But the computation of the blue problems
(3.14) over longer and longer time intervals seems at first sight to be as expensive as
the original problem (2.1). This is not the case, however, since the blue problems
are homogeneous, i.e. without a source term, and their solution is given by a matrix
exponential,

𝒘𝑛(𝑡) = exp((𝑡 − 𝑇𝑛−1)𝐴)𝒗𝑛−1(𝑇𝑛−1), 𝑡 ∈ [𝑇𝑛−1, 𝑇], (3.16)

where the computation time of the product between the matrix exponential and the
vector 𝒗𝑛−1(𝑇𝑛−1) is independent of the value of 𝑡. There are many efficient and
mature computational tools to approximate such solutions over long times (Higham
2008, Moler and Van Loan 2003), such as rational Krylov methods and Chebyshev
expansions, and also the scaling and squaring algorithm with a Padé approximation
(i.e. the built-in command ‘expmv’ in MATLAB R2023b or later versions). This
latter approach, however, is more suitable for smaller matrices; for large sparse
matrices the former approaches should be used. With efficient computations of
the matrix exponential, using ParaExp can achieve high parallel efficiencies, up to
80% for the time parallelization of the wave equation (2.7); see Gander and Güttel
(2013). ParaExp is therefore an excellent time parallelization method for linear
hyperbolic problems.

The ParaExp method described above is restricted to linear problems. An
extension to nonlinear problems (2.2) was presented in Gander et al. (2018a),
assuming that there is a linear part of the nonlinear term such as

𝑓 (𝒖(𝑡), 𝑡) = 𝐴𝒖(𝑡) + 𝐵(𝒖(𝑡)) + 𝒈(𝑡). (3.17)

Following the idea in the linear case, we decouple the nonlinear problem (3.17) into
a linear problem 𝒘′(𝑡) = 𝐴𝒘(𝑡) with 𝒘(0) = 𝒖0 and a nonlinear problem 𝒗′(𝑡) =

𝐵(𝒗(𝑡) + 𝒘(𝑡)) + 𝒈(𝑡) with zero initial value 𝒗(0) = 0. The sum 𝒖(𝑡) = 𝒘(𝑡) + 𝒗(𝑡)
then still solves (3.17), but the problems on the time intervals are now coupled: in
{[𝑇𝑛−1, 𝑇𝑛]}𝑁𝑡

𝑛=1, the initial value of 𝒘(𝑡) at 𝑡 = 𝑇𝑛−1 depends on 𝒗(𝑇𝑛−1). To obtain
parallelism in time, we need to iterate by first solving in parallel the linear problems

(𝒘𝑘
𝑛)′(𝑡) = 𝐴𝒘𝑘

𝑛(𝑡), 𝑡 ∈ [𝑇𝑛−1, 𝑇],
𝒘𝑘
𝑛(𝑇𝑛−1) = 𝒗𝑘−1

𝑛−1(𝑇𝑛−1), 𝒘𝑘
1 (𝑇0) = 𝒖0,
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and then solving in parallel the nonlinear problems

(𝒗𝑘𝑛)′(𝑡) = 𝐴𝒖𝑘
𝑛(𝑡) + 𝐵(𝒗𝑘𝑛(𝑡) +

𝑛∑︁
𝑗=1

𝒘𝑘
𝑗 (𝑡)) + 𝒈(𝑡), 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛],

𝒖𝑘
𝑛(𝑇𝑛−1) = 0,

where 𝑛 = 1, 2, . . . , 𝑁𝑡 . The 𝑘th iterate solution is then defined by 𝒖𝑘
𝑛(𝑡) =

𝒗𝑘𝑛(𝑡) +∑𝑛
𝑗=1 𝒘

𝑘
𝑗
(𝑡) for 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛].

In the above nonlinear problems, the explicit dependence of 𝐵 on
∑𝑛

𝑗=1 𝒘
𝑘
𝑗
(𝑡)

implies that we have to solve the linear problems on the entire interval [𝑇𝑛−1, 𝑇𝑛].
This would be redundant and expensive if 𝐴 were large. To avoid this, we refor-
mulate the iteration by rewriting 𝒗𝑘𝑛(𝑡) as 𝒗𝑘𝑛(𝑡) = 𝒖𝑘

𝑛(𝑡) −∑𝑛
𝑗=1 𝒘

𝑘
𝑗
(𝑡). In this new

nonlinear version of the ParaExp algorithm, we then solve for 𝑛 = 1, 2, . . . , 𝑁𝑡

sequentially,

(𝒘𝑘
𝑛)′(𝑡) = 𝐴𝒘𝑘

𝑛(𝑡), 𝑡 ∈ [𝑇𝑛−1, 𝑇],

𝒘𝑘
𝑛(𝑇𝑛−1) = 𝒖𝑘−1

𝑛−1(𝑇𝑛−1) −
𝑛−1∑︁
𝑗=1

𝒘𝑘−1
𝑗 (𝑇𝑛−1), 𝒘𝑘

1 (𝑇0) = 𝒖0,
(3.18)

followed by solving in parallel the nonlinear problems

(𝒖𝑘
𝑛)′(𝑡) = 𝐴𝒖𝑘

𝑛(𝑡) + 𝐵(𝒖𝑘
𝑛(𝑡)) + 𝒈(𝑡), 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛],

𝒖𝑘
𝑛(𝑇𝑛−1) =

𝑛∑︁
𝑗=1

𝒘𝑘
𝑗 (𝑇𝑛−1), (3.19)

and finally we form the approximate solution at the 𝑘th iteration as

𝒖𝑘(𝑡) = 𝒖𝑘
𝑛(𝑡), 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛] .

The nonlinear ParaExp algorithm (3.18)–(3.19) has a finite step convergence prop-
erty and a very interesting relation to the Parareal algorithm.

Theorem 3.4 (Gander et al. 2018a). The iterate 𝒖𝑘(𝑡) at the 𝑘th iteration coin-
cides with the exact solution 𝒖(𝑡) for 𝑡 ∈ [0, 𝑇𝑘], that is, the iterative ParaExp
method converges in a finite number of steps. Moreover, at each time point 𝑇𝑛, the
iterate 𝒖𝑘(𝑡) also coincides with the solution generated by the Parareal algorithm

𝑼𝑘
𝑛 = G

(
𝑇𝑛−1, 𝑇𝑛,𝑼

𝑘
𝑛−1
)
+ F

(
𝑇𝑛−1, 𝑇𝑛,𝑼

𝑘−1
𝑛−1
)
− G
(
𝑇𝑛−1, 𝑇𝑛,𝑼

𝑘−1
𝑛−1
)
, (3.20a)

i.e. 𝒖𝑘
𝑛 = 𝑼𝑘

𝑛 for 𝑛 = 0, 1, . . . , 𝑁𝑡 , where the coarse propagator G(𝑇𝑛−1, 𝑇𝑛,𝑼) solves
the linear problem

𝒖′(𝑡) = 𝐴𝒖(𝑡), 𝒖(𝑇𝑛−1) = 𝑼, 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛], (3.20b)

and the fine propagator F(𝑇𝑛−1, 𝑇𝑛,𝑼) solves the nonlinear problem

𝒖′(𝑡) = 𝐴𝒖(𝑡) + 𝐵(𝒖(𝑡)) + 𝒈(𝑡), 𝒖(𝑇𝑛−1) = 𝑼, 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛] . (3.20c)
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Figure 3.8. Convergence behaviour of ParaExp and standard Parareal for Burgers’
equation with diffusion parameter 𝜈 changing from large to small. In each panel,
the transverse line indicates the order of the truncation error, max{Δ𝑡,Δ𝑥2}, where
in practice one would stop the iteration.

This is the first time we have seen the Parareal algorithm, which we will discuss
in detail in Section 4. The Parareal algorithm (3.20a)–(3.20c) is a simplified version
since, for the standard version, the coarse propagator G also solves (3.20c). As will
be discussed in Section 4, the standard Parareal algorithm also does not perform
well for hyperbolic problems, and thus we cannot expect the simplified version to
work well in this case. An illustration of this aspect is shown in Figure 3.8 for (2.2)
with

𝑓 (𝒖(𝑡), 𝑡) = 𝐴𝒖(𝑡) + 𝐵𝒖2(𝑡), 𝑡 ∈ (0, 2), (3.21)

arising from semi-discretizing the one-dimensional Burgers’ equation with periodic
boundary conditions using centred finite differences with mesh size Δ𝑥 = 1

100 ,
where 𝐴 = 𝐴xx and 𝐵 = − 1

2 𝐴x with 𝐴xx and 𝐴x given in (3.12). For both ParaExp
and Parareal, we use backward Euler for the fine solver F with a small step size
Δ𝑡 = 0.01/20. For Parareal, we use backward Euler for the coarse solver G as
well, but with a larger step size Δ𝑇 = 0.01. For ParaExp, we use the built-in solver
expmv in MATLAB for the coarse propagator.

Clearly, for strongly diffusive problems, i.e. when 𝜈 is large, ParaExp converges
very fast and the convergence rate is better than for standard Parareal. As 𝜈

decreases, standard Parareal converges faster than ParaExp, and particularly for
𝜈 = 0.02, the latter diverges as shown in Figure 3.8(b). If we decrease 𝜈 further,
then standard Parareal will also eventually diverge, and we will delve into this more
in Section 4.

3.5. ParaDiag

The last technique we would like to explain is the ParaDiag family of methods,
which is based on diagonalizing the time-stepping matrix (or its approximation).
There are two variants of ParaDiag depending on how we treat the time-stepping
matrix.
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In the ParaDiag I family, which also represents a direct time-parallel solver like
ParaExp, we diagonalize the time-stepping matrix and can then solve each time-
step in parallel after diagonalization (Maday and Rønquist 2008). However, the
diagonalization in ParaDiag I is only possible when either using variable time-step
sizes, or using a different time-integrator for the last step compared to the others,
as in boundary value methods. For the case of variable step sizes, a detailed error
analysis (Gander et al. 2019) shows that we can only use a limited number of time-
steps to parallelize, in double precision about 20, since we have to balance roundoff
error with truncation error. Another shortcoming is that this direct ParaDiag method
has only been explored for a few low-order time-integrators, such as backward Euler
and the trapezoidal rule. ParaDiag I with variable time-step sizes is not easy to
generalize to higher-order time-integrators, such as Runge–Kutta methods. When
using a discretization of boundary value method type, the number of time-steps
we can parallelize in a single time window is greatly improved, but again only
backward Euler and the trapezoidal rule are applicable (Liu, Wang, Wu and Zhou
2022).

Both the limitations on the number of time-steps and the time-integrator are
overcome by the ParaDiag II family (Gander et al. 2021c). The key idea is to
design a suitable approximation of the time-stepping matrix and then to use it in
a stationary iteration or as a preconditioner for a Krylov method, so we have to
pay with iterations. The design principles for constructing such a preconditioner
are twofold: its diagonalization should be well-conditioned, in contrast to the
ParaDiag I family of methods (i.e. the condition number of its eigenvector matrix
should be small), and the iterations should converge fast, i.e. have small spectral
radius, or equivalently the spectrum of the preconditioned matrix should be tightly
clustered around 1 for Krylov acceleration. The first design principle ensures that
roundoff error arising from solving the preconditioning step via diagonalization
is well controlled. The second design principle guarantees fast convergence of
the preconditioned iteration. This iterative ParaDiag method was proposed in
McDonald et al. (2018) and independently in Gander and Wu (2019). ParaDiag II
techniques have been used as important components in new variants of Parareal
and MGRiT which we will see in Sections 4.2 and 4.4, and which in their original
form only work well for parabolic problems. ParaDiag II techniques enhance the
new Parareal and MGRiT variants in two directions: they improve the speed-up by
making the coarse grid correction parallel (Wu 2018, Wu and Zhou 2019), and they
can also make Parareal and MGRiT work well for hyperbolic problems (Gander
and Wu 2020) by allowing the coarse and fine propagators using the same grids,
as we will show in Section 4.5. Use of ParaDiag II to solve the forward–backward
system arising in PDE-constrained optimization can be found in Wu, Wang and
Zhou (2023), Wu and Liu (2020) and Heinzelreiter and Pearson (2024), where
ParaDiag II produces a parallel version of the matching Schur complement (MSC)
preconditioner (Pearson, Stoll and Wathen 2012). Modifications and improvements
of ParaDiag II can be found in Gander and Lunet (2024) and Liu and Wu (2022).
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ParaDiag methods are applicable to both parabolic and hyperbolic problems, but
the mechanisms for the direct and iterative versions are completely different. In
the following, we introduce the main theory for these two versions and illustrate
them with numerical results for the advection–diffusion equation (2.5), Burgers’
equation (2.6) and the wave equation (2.7).

3.5.1. Direct ParaDiag methods (ParaDiag I)
Parallelization by diagonalization of the time-stepping matrix, originally introduced
in Maday and Rønquist (2008), is based on a very simple idea: consider solving
the initial value problem (2.1), i.e. 𝒖′ = 𝐴𝒖 + 𝒈(𝑡) with 𝐴 ∈ R𝑁𝑥×𝑁𝑥 , by backward
Euler with variable step sizes

𝒖𝑛 − 𝒖𝑛−1
Δ𝑡𝑛

= 𝐴𝒖𝑛 + 𝒈𝑛, 𝑛 = 1, 2, . . . , 𝑁𝑡 , (3.22)

with
∑𝑁𝑡

𝑛=1 Δ𝑡𝑛 = 𝑇 . Instead of solving these 𝑁𝑡 difference equations one by one,
we reformulate them as an all-at-once system, that is, we solve all the solution
vectors collected in 𝑼 ≔ (𝒖⊤

1 , 𝒖
⊤
2 , . . . , 𝒖

⊤
𝑁𝑡

)⊤ in one shot,

K𝑼 = 𝒃, K ≔ 𝐵 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ 𝐴, (3.23a)

where ⊗ is the Kronecker product, 𝐼𝑥 ∈ R𝑁𝑥×𝑁𝑥 and 𝐼𝑡 ∈ R𝑁𝑡×𝑁𝑡 are identity
matrices, and 𝐵 is the time-stepping matrix,

𝐵 =



1
Δ𝑡1

− 1
Δ𝑡2

1
Δ𝑡2
. . .

. . .

− 1
Δ𝑡𝑁𝑡

1
Δ𝑡𝑁𝑡


, 𝒃 =


1
Δ𝑡1

𝒖0 + 𝒈1
𝒈2
...

𝒈𝑁𝑡


. (3.23b)

Since the time-steps {Δ𝑡𝑛} are all different from each other, we can diagonalize 𝐵:

𝐵 = 𝑉𝐷𝑉−1, 𝐷 = diag
(

1
Δ𝑡1

,
1
Δ𝑡2

, . . . ,
1

Δ𝑡𝑁𝑡

)
. (3.24)

Then we can factor K in a blockwise manner as

K = (𝑉 ⊗ 𝐼𝑥)(𝐷 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ 𝐴)(𝑉−1 ⊗ 𝐼𝑥).

This allows us to solve 𝑼 from (3.23a) via the following three steps:
𝑼𝑎 = (𝑉−1 ⊗ 𝐼𝑥)𝒃, (step a)(

1
Δ𝑡𝑛

𝐼𝑥 − 𝐴

)
𝒖𝑏
𝑛 = 𝒖𝑎

𝑛 , 𝑛 = 1, 2, . . . , 𝑁𝑡 , (step b)

𝑼 = (𝑉 ⊗ 𝐼𝑥)𝒖𝑏, (step c)

(3.25)

where

𝑼𝑎 ≔
((
𝒖𝑎

1
)⊤

, . . . ,
(
𝒖𝑎
𝑁𝑡

)⊤)⊤ and 𝑼𝑏 ≔
((
𝒖𝑏

1
)⊤

, . . . ,
(
𝒖𝑏
𝑁𝑡

)⊤)⊤
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000072
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 17 Jul 2025 at 00:34:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000072
https://www.cambridge.org/core


418 M. J. Gander, S. L. Wu and T. Zhou

Note that the first and last steps only involve matrix–vector multiplications and thus
the computation is cheap. The major computation is step b, but interestingly, all
the 𝑁𝑡 linear systems stemming from the time-steps are independent and can be
solved in parallel.

For an arbitrary choice of the step sizes {Δ𝑡𝑛}, we have to rely on numerical
methods (e.g. eig in MATLAB) to obtain the eigenvector matrix 𝑉 . This does not
bring significant computational burden since 𝑁𝑡 does not need to be very large in
practice, but it prevents us from performing a complete analysis of the method, such
as studying the roundoff error and the selection of the parameters involved. The
time mesh used in Maday and Rønquist (2008) is a geometric mesh Δ𝑡𝑛 = 𝜇𝑛−1Δ𝑡1
with 𝜇 > 1. They tested this direct time-parallel method with 𝜇 = 1.2 for the heat
equation in one dimension and obtained close-to-perfect speed-up.

For prescribed 𝑇 , the constraint
𝑁𝑡∑︁
𝑛=1

Δ𝑡𝑛 =

𝑁𝑡∑︁
𝑛=1

𝜇𝑛−1Δ𝑡1 = 𝑇

specifies the first step size Δ𝑡1 as

Δ𝑡1 =
𝑇∑𝑁𝑡

𝑛=1 𝜇
𝑛−1

.

This gives

Δ𝑡𝑛 =
𝜇𝑛−1∑𝑁𝑡

𝑛=1 𝜇
𝑛−1

𝑇. (3.26)

A large 𝜇 will produce large step sizes and thus large discretization error, while
a small 𝜇 close to 1 produces large roundoff error when diagonalizing the time-
stepping matrix 𝐵, which can be understood by noticing that as 𝜇 approaches 1, the
time-stepping matrix 𝐵 is close to a Jordan block, and diagonalizing such matrices
results in large roundoff error. Therefore it is important to know how to fix 𝜇

by balancing the discretization and roundoff error. This was carefully studied in
Gander et al. (2016a) for first-order parabolic problems, and in Gander et al. (2019)
for the second-order wave equation. In what follows, we let 𝜇 = 1 + 𝜚, with 𝜚 > 0
being a small value, and we revisit the main existing results for fixing 𝜚.

Theorem 3.5 (first-order problem). For the system of ODEs 𝒖′ = 𝐴𝒖 + 𝒈 with
initial value 𝒖(0) = 𝒖0 and 𝑡 ∈ [0, 𝑇], suppose 𝜎(𝐴) ⊂ R− with |𝜆(𝐴)| ≤ 𝜆max2.
Let 𝒖𝑁𝑡

(𝜚) and 𝒖𝑁𝑡
(0) be the numerical solutions at 𝑡 = 𝑇 obtained by using

backward Euler with geometric step sizes and the uniform step size, respectively.

2 Here and hereafter, 𝜆(·) and 𝜎(·) denote an arbitrary eigenvalue and the spectrum of the involved
matrix.
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Let {�̃�𝑛(𝜚)} be the numerical solution computed by the diagonalization method
(3.25). Then we obtain

∥𝒖𝑁𝑡
(𝜚) − 𝒖𝑁𝑡

(0)∥ ≲ 𝐶(𝜆∗𝑇, 𝑁𝑡 )𝜚2,

∥�̃�𝑛(𝜚) − 𝒖𝑛(𝜚)∥ ≲ 𝜖
𝑁2
𝑡 (2𝑁𝑡 + 1)(𝑁𝑡 + 𝜆max𝑇)

𝜙(𝑁𝑡 )
𝜚−(𝑁𝑡−1),

(3.27)

where

𝐶(𝑥, 𝑁𝑡 ) ≔
𝑁𝑡 (𝑁2

𝑡 − 1)
24

𝑟(𝑥/𝑁𝑡 , 𝑁𝑡 ) with 𝑟(𝑥, 𝑁𝑡 ) ≔
(

𝑥

1 + 𝑥

)2
(1 + 𝑥)−𝑁𝑡 .

Here 𝜖 is the machine precision3 and

𝜙(𝑁𝑡 ) ≔


𝑁𝑡

2
!
(
𝑁𝑡

2
− 1
)

!, if 𝑁𝑡 is even,(
𝑁𝑡 − 1

2
!
)2

, if 𝑁𝑡 is odd.

The quantity 𝜆∗ ≔ 𝑁𝑡𝑥∗/𝑇 , where 𝑥∗ is the maximizer of the function 𝑟(𝑥, 𝑁𝑡 ) for
𝑥 ∈ [0,∞). The best choice of 𝜚, denoted by 𝜚opt, is the quantity balancing the two
error bounds in (3.27), that is,

𝜚opt =

(
𝜖
𝑁2
𝑡 (2𝑁𝑡 + 1)(𝑁𝑡 + 𝜆max𝑇)
𝜙(𝑁𝑡 )𝐶(𝜆∗𝑇, 𝑁𝑡 )

)1/(𝑁𝑡+1)
. (3.28)

Proof. Let 𝜆 ∈ 𝜎(𝐴) be an arbitrary eigenvalue of 𝐴 and consider the Dahlquist
test equation 𝑦′ = 𝜆𝑦. Then the first estimate in (3.27) follows from the analysis
in Gander et al. (2016a, Theorem 2). For this test equation, the error due to
diagonalization follows from the analysis in Gander et al. (2016a, Theorem 6) and
the bound of the error reaches its maximum when |𝜆 | = 𝜆max.

The first estimate in (3.27) presents the truncation error between the use of a
geometric time mesh and a uniform time mesh. From this, we can estimate the
truncation error between 𝒖𝑁𝑡

(𝜚) and the exact solution 𝒖(𝑇) as

∥𝒖𝑁𝑡
(𝜚) − 𝒖(𝑇)∥ ≤ ∥𝒖𝑁𝑡

(𝜚) − 𝒖𝑁𝑡
(0)∥ + ∥𝒖𝑁𝑡

(0) − 𝒖(𝑇)∥,

where the estimate of the last term is well understood and does not play a dominant
role. The second estimate in (3.27) is the roundoff error due to diagonalization
of the time-stepping matrix 𝐵. The analysis of this error is closely related to the
condition number of the eigenvector matrix 𝑉 . With the geometric step sizes in

3 In the ISO C Standard, 𝜖 = 1.19 × 10−7 for single precision and 𝜖 = 2.22 × 10−16 for double
precision.
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Figure 3.9. Measured error of ParaDiag I for five values of 𝑁𝑡 using geometric
step sizes as in (3.26) with 𝜇 = 1 + 𝜚 and 𝜚 ∈ [10−2, 1]. The star denotes the
theoretically estimated 𝜚opt from (3.28).

(3.26),𝑉 and𝑉−1 are lower triangular Toeplitz matrices (see Gander et al. 2016a),

𝑉 = T(𝑝1, 𝑝2, . . . , 𝑝𝑁𝑡−1), 𝑝𝑛 ≔
1∏𝑛

𝑗=1(1 − 𝜚 𝑗)
,

𝑉−1 = T(𝑞1, 𝑞2, . . . , 𝑞𝑁𝑡−1), 𝑞𝑛 = (−1)𝑛𝜚𝑛(𝑛−1)/2𝑝𝑛,

(3.29a)

where T is the lower triangular Toeplitz operator

T(𝑎1, 𝑎2, . . . , 𝑎𝑁𝑡
) =


1
𝑎1 1
...

. . .
. . .

𝑎𝑁𝑡−1 . . . 𝑎1 1


. (3.29b)

The closed-form formula for𝑉 and𝑉−1 in (3.29a) is useful for estimating Cond(𝑉),
and then the roundoff error in (3.27). However, in practice we do not use these
formulas for 𝑉 and 𝑉−1 in (3.25). Instead we use the command eig in MATLAB
to get 𝑉 and 𝑉−1, since it automatically optimizes the condition number by scaling
the eigenvectors.

We now study the error of the ParaDiag I method for two PDEs with homogeneous
Dirichlet boundary conditions and the initial value 𝑢(𝑥, 0) = sin(2𝜋𝑥) for 𝑥 ∈ (0, 1),
the heat equation (2.3) and the advection–diffusion equation (2.5) with 𝜈 = 10−2.
Both PDEs are discretized by centred finite differences with mesh size Δ𝑥 = 1

50 .
With 𝑇 = 0.2 and five values of 𝑁𝑡 , Figure 3.9 shows the error of ParaDiag I for
𝜚 ∈ [10−2, 1]. The error is measured as max𝑛=1,2,...,𝑁𝑡

∥�̃�𝑛(𝜚) − 𝒖(𝑡𝑛)∥∞, where
𝒖(𝑡𝑛) is the reference solution computed by the exponential integrator, that is,
𝒖(𝑡𝑛) = e−𝐴𝑡𝑛𝒖0 and �̃�𝑛(𝜚) is the solution at 𝑡 = 𝑡𝑛 by ParaDiag I. Clearly there
exists an optimal choice of 𝜚 that minimizes the error. We also use a star to
show for each 𝑁𝑡 the theoretically estimated 𝜚opt from (3.28). For the advection–
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Figure 3.10. The error of ParaDiag I increases rapidly for 𝑁𝑡 exceeding a threshold
when using 𝜇 = 1 + 𝜚num.

diffusion equation, this 𝜚opt predicts the optimal choice very well, and also quite
well for the heat equation, except when 𝑁𝑡 is small, even though the theoretical
estimate was just obtained by balancing roundoff and truncation error estimates
asymptotically. Let 𝜚num be the minimizer determined numerically, as shown in
Figure 3.9. In Figure 3.10 we show the error for backward Euler with uniform
step size Δ𝑡 = 𝑇/𝑁𝑡 and the ParaDiag I method using variable step sizes Δ𝑡𝑛, i.e.
(3.26) with 𝜇 = 1 + 𝜚num. Here 𝑇 = 0.5 and 𝑁𝑡 = 24:10. As 𝑁𝑡 grows, the error
for ParaDiag I decreases first and then increases rapidly when 𝑁𝑡 exceeds some
threshold less than 100.

We next consider a second-order problem, e.g. the wave equation (2.7) after
space discretization,

𝒖′′(𝑡) = 𝐴𝒖(𝑡) for 𝑡 ∈ (0, 𝑇], 𝒖(0) = 𝒖0, 𝒖′(0) = �̃�0, (3.30)

where 𝐴 ∈ R𝑁𝑥×𝑁𝑥 . For the wave equation (2.7), 𝐴 is a discretized Laplacian. To
use ParaDiag I, we transform this equation into a first-order system,

𝒘′(𝑡) = 𝑨𝒘(𝑡) for 𝑡 ∈ (0, 𝑇], 𝒘(0) = (𝒖⊤
0 , �̃�

⊤
0 )⊤, (3.31)

where 𝒘(𝑡) = (𝒖⊤(𝑡), (𝒖′(𝑡))⊤)⊤ and

𝑨 =

[
𝐼𝑥

𝐴

]
.

To avoid numerical dispersion, we use the trapezoidal rule as the time-integrator,

𝒘𝑛 − 𝒘𝑛−1
Δ𝑡𝑛

=
𝑨

2
(𝒘𝑛 + 𝒘𝑛−1), 𝑛 = 1, 2, . . . , 𝑁𝑡 , (3.32)

which is energy-preserving in the sense that ∥𝒘𝑛∥2 = ∥𝒘0∥2. The step sizes {Δ𝑡𝑛}
are again geometric as in (3.26) with some parameter 𝜇 = 1 + 𝜚 > 1. Similarly to
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(3.23a), we can represent (3.32) as an all-at-once system,

K𝑾 = 𝒃, K = 𝐵 ⊗ 𝐼𝑥 − �̃� ⊗ 𝐴, (3.33a)

with some suitable vector 𝒃, where 𝐵 is the matrix in (3.23b) and

�̃� =
1
2


1
1 1

. . .
. . .

1 1


. (3.33b)

To apply the diagonalization technique, we rewrite (3.33a) as

K𝑾 = �̃�, K = �̃�−1𝐵 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ 𝐴, �̃� = (�̃�−1 ⊗ 𝐼𝑥)𝒃. (3.34)

The matrix �̃�−1𝐵 can be diagonalized (see Gander et al. 2019),

�̃�−1𝐵 = 𝑉 diag
(

2
Δ𝑡1

, . . . ,
2

Δ𝑡𝑁𝑡

)
𝑉−1, (3.35a)

where 𝑉 and 𝑉−1 are given by

𝑉 = T(𝑝1, 𝑝2, . . . , 𝑝𝑁𝑡−1), 𝑝𝑛 ≔

𝑛∏
𝑗=1

1 + 𝜇 𝑗

1 − 𝜇 𝑗
,

𝑉−1 = T(𝑞1, 𝑞2, . . . , 𝑞𝑁𝑡−1), 𝑞𝑛 ≔ 𝜇−𝑛
𝑛∏
𝑗=1

1 + 𝜇− 𝑗+2

1 − 𝜇− 𝑗
.

(3.35b)

Then the all-at-once system (3.34) can be solved via ParaDiag I (see (3.25)) as well.
Similarly to the first-order equation studied above, by balancing the truncation

error (between the geometric mesh and the uniform mesh) and the roundoff error,
the best mesh parameter 𝜇 = 1 + 𝜚opt is obtained as follows.

Theorem 3.6 (second-order problem). For the second-order system of ODEs
𝒖′′ = 𝐴𝒖 with 𝜆(𝐴) ≤ 0, let 𝒖𝑁𝑡

(𝜚) and 𝒖𝑁𝑡
(0) denote the numerical solutions at

𝑡 = 𝑇 obtained by using the trapezoidal rule with geometric time-step sizes and the
uniform time-step size. Let {�̃�𝑛(𝜚)} denote the numerical solution computed by
the diagonalization method (3.25). Then we obtain

∥𝒖𝑁𝑡
(𝜚) − 𝒖𝑁𝑡

(0)∥ ≲
𝑁𝑡 (𝑁2

𝑡 − 1)
15

𝜚2,

∥�̃�𝑛(𝜚) − 𝒖𝑛(𝜚)∥ ≲ 𝜖
22𝑁𝑡−1/2𝑁𝑡

(𝑁𝑡 − 1)!
𝜚−(𝑁𝑡−1).

(3.36)

The best choice of 𝜚, denoted by 𝜚opt, is the quantity balancing the two error bounds
in (3.36), that is,

𝜚opt =

(
𝜖

15 × 22𝑁𝑡−1/2

(𝑁2
𝑡 − 1)(𝑁𝑡 − 1)!

)1/(𝑁𝑡+1)
. (3.37)
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Figure 3.11. Measured error of ParaDiag I and the trapezoidal rule using uniform
step sizes for the wave equation (2.7). The star in (a) is the parameter 𝜚opt obtained
in theory (see (3.37)).

Proof. Let𝜆 > 0 be an arbitrary eigenvalue of−𝐴 and consider the scalar equation
𝑢′′ + 𝜆𝑢 = 0. Then, for small 𝜚, according to Gander et al. (2019, Theorem 2.1),
the truncation error between using the geometric mesh and the uniform mesh is of
order

𝑂

(
𝑁𝑡 (𝑁2

𝑡 − 1)
6

𝑟1

(
𝜆𝑇

2𝑁𝑡

)
𝜚2
)

with 𝑟1(𝑠) =
𝑠3

(1 + 𝑠2)2 .

For 𝑠 ≥ 0 we have 𝑟1(𝑠) ≤ 2
5 , and this gives the first estimate in (3.36). The

second estimate follows from the roundoff error analysis in Gander et al. (2019,
Theorem 2.11), which is

22𝑁𝑡−1/2𝑁𝑡

(𝑁𝑡 − 1)!
𝑟2

(
𝜆𝑇

2𝑁𝑡

)
with 𝑟2(𝑠) =

1
1 + 𝑠2 .

For 𝑠 ≥ 0 we have 𝑟2(𝑠) ≤ 1.

In Figure 3.11(a) we show the error of ParaDiag I for five values of 𝑁𝑡 when ap-
plied to the wave equation (2.7) with homogeneous Dirichlet boundary conditions.
For each 𝑁𝑡 , the parameter 𝜚 varies from 10−2 to 1. Here, Δ𝑥 = 1

20 and 𝑇 = 0.2.
Similarly to the first-order parabolic problems (see Figure 3.9), there exists an
optimal choice of 𝜚 which minimizes the error, and the theoretical estimate 𝜚opt is
close to this choice. With 𝜚num denoting the best working parameter determined
numerically for each 𝑁𝑡 , Figure 3.11(b) shows the error for the geometric time
mesh and the uniform time mesh. For the former, the error grows rapidly when
𝑁𝑡 > 32.

For ParaDiag I, the increase in the error shown in Figures 3.10 and 3.11(b) can
be attributed to the poor condition number of the eigenvector matrix 𝑉 of the time-
step matrices 𝐵 and �̃�−1𝐵. In Table 3.1 we show this condition number for several
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Table 3.1. Cond(𝑉) for 𝐵 ( backward Euler) and �̃�−1𝐵 (trapezoidal rule).

𝑁𝑡 5 10 20 30 60 100

𝐵 1.7 × 103 8.4 × 104 1.3 × 106 2.8 × 106 4.4 × 106 4.8 × 106

�̃�−1𝐵 4.7 × 103 7.9 × 105 6.9 × 107 3.8 × 108 1.9 × 109 4.1 × 109

values of 𝑁𝑡 , where 𝜇 = 1 + 𝜚num, and 𝜚num is determined numerically for each
𝑁𝑡 by minimizing the error shown in Figures 3.9 and 3.11(a). As 𝑁𝑡 increases, the
condition number rises rapidly, which confirms our analysis of roundoff error very
well (see (3.27) and (3.36)), but then reaches a plateau when using the numerically
optimized parameter and not the theoretically determined one, an observation that
merits further study.

We now introduce another ParaDiag I method from Liu et al. (2022), which
addresses the limitation associated with 𝑁𝑡 . Instead of using backward Euler or
the trapezoidal rule with geometric time-step sizes, we use the same time-step size
Δ𝑡 but different methods, an idea which goes back to the boundary value technique
(Axelsson and Verwer 1985). In this approach, we take, for example, centred finite
differences for the first (𝑁𝑡 −1) time-steps, followed by a final backward Euler step.
For the system of ODEs (2.1), this gives

𝒖𝑛+1 − 𝒖𝑛−1
2Δ𝑡

= 𝐴𝒖𝑛 + 𝒈𝑛, 𝑛 = 1, 2, . . . , 𝑁𝑡 − 1,
𝒖𝑁𝑡

− 𝒖𝑁𝑡−1

Δ𝑡
= 𝐴𝒖𝑁𝑡

+ 𝒈𝑁𝑡
.

(3.38)

It is important to note that this implicit boundary value technique time discretization
has quite different stability properties from traditional time discretizations; see e.g.
Gander (2015, Section 5.2). For the boundary value technique discretization (3.38),
the all-at-once system is

K𝑼 = 𝒃, K = 𝐵 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ 𝐴, (3.39a)

where

𝐵 =
1
Δ𝑡



0 1
2

− 1
2 0 1

2
. . .

. . .
. . .

−1
2 0 1

2
−1 1


, 𝒃 =


𝒖0
2Δ𝑡 + 𝒈1

𝒈2
...

𝒈𝑁𝑡


. (3.39b)

For the all-at-once system given by equation (3.39a), only the initial value 𝒖0 is
required, and all time-steps are solved simultaneously in one shot.
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Axelsson and Verwer (1985) explored boundary value techniques to circumvent
the well-known Dahlquist barriers between convergence and stability, which arise
when using (3.38) in a time-stepping mode. In a general nonlinear case, they proved
that the numerical solutions obtained simultaneously are of uniform second-order
accuracy (Axelsson and Verwer 1985, Theorem 4), even though the last step is a
first-order scheme. Even earlier, in Fox (1954) and also Fox and Mitchell (1957),
such boundary value technique discretizations had already appeared: instead of
backward Euler, the authors used the BDF2 method for the last step in (3.38),

3𝒖𝑁𝑡
− 4𝒖𝑁𝑡−1 + 𝒖𝑁𝑡−2

2Δ𝑡
= 𝐴𝒖𝑁𝑡

+ 𝒈𝑁𝑡
.

The method (3.38) is a prime example of the so-called boundary value methods
(BVMs) developed a bit later, and the all-at-once system (3.39a) was carefully jus-
tified in Brugnano, Mazzia and Trigiante (1993); see also Brugnano and Trigiante
(2003). In BVMs, the resulting all-at-once system is typically solved iteratively by
constructing effective preconditioners.

A mathematical analysis of ParaDiag I based on BVM discretization like (3.38)
can be found in Liu et al. (2022).

Theorem 3.7. The time-stepping matrix 𝐵 given by (3.39b) can be factored as
𝐵 = 𝑉𝐷𝑉−1 with Cond(𝑉) = 𝑂(𝑁2

𝑡 )4.

ParaDiag I with BVM discretization can also be applied to second-order problems
of the form 𝒖′′ = 𝐴𝒖, with initial values 𝒖(0) = 𝒖0 and 𝒖′(0) = �̃�0. By setting
𝒗(𝑡) ≔ 𝒖′(𝑡) and 𝒘(𝑡) ≔ (𝒖⊤(𝑡), 𝒗⊤(𝑡))⊤, we can rewrite this equation as

𝒘′(𝑡) = 𝑨𝒘(𝑡), 𝑨 ≔

[
𝐼𝑥

𝐴

]
, 𝒘(0) ≔

[
𝒖0
�̃�0

]
.

Then, similarly to (3.38), the same time discretization scheme leads to
𝒘𝑛+1 − 𝒘𝑛−1

2Δ𝑡
= 𝑨𝒘𝑛, 𝑛 = 1, 2, . . . , 𝑁𝑡 − 1,

𝒘𝑁𝑡
− 𝒘𝑁𝑡−1

Δ𝑡
= 𝑨𝒘𝑁𝑡

.

(3.40)

Rewriting the second-order problem as a first-order system doubles the storage
requirement for the space variables at each time point, which is not desirable,
especially if the second-order problem arises from a semi-discretization of a PDE
in high dimensions or with small mesh sizes. To avoid this, one can write the
all-at-once system for (3.40) using only 𝑼 ≔ (𝒖1, 𝒖2, . . . , 𝒖𝑁𝑡

)⊤, which leads to

(𝐵2 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ 𝐴)𝑼 = 𝒃, (3.41)

4 Closed-form formulas for 𝑉 , 𝑉−1, and 𝐷 are provided in Liu et al. (2022, Section 3).
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where 𝐵 is the matrix defined in (3.39b), and

𝒃 ≔

(
�̃�⊤

0
2Δ𝑡

,−
𝒖⊤

0
4Δ𝑡2

, 0, . . . , 0
)⊤

.

To see this, we trace back the steps at the discrete level which led to the first-
order system at the continuous level: from (3.40) we represent {𝒖𝑛} and {𝒗𝑛}
separately as 

𝒖𝑛+1 − 𝒖𝑛−1
2Δ𝑡

= 𝒗𝑛, 𝑛 = 1, 2, . . . , 𝑁𝑡 − 1,
𝒖𝑁𝑡

− 𝒖𝑁𝑡−1

Δ𝑡
= 𝒗𝑁𝑡

,
𝒗𝑛+1 − 𝒗𝑛−1

2Δ𝑡
= 𝐴𝒖𝑛, 𝑛 = 1, 2, . . . , 𝑁𝑡 − 1,

𝒗𝑁𝑡
− 𝒗𝑁𝑡−1

Δ𝑡
= 𝐴𝒖𝑁𝑡

.

Hence, with the matrix 𝐵 in (3.39b), we have

(𝐵 ⊗ 𝐼𝑥)𝑼 − 𝑽 = 𝒃1, (𝐵 ⊗ 𝐼𝑥)𝑽 − 𝐴𝑼 = 𝒃2,

where

𝑽 ≔ (𝒗⊤1 , . . . , 𝒗
⊤
𝑁𝑡

)⊤, 𝒃1 ≔

(
𝒖⊤

0
2Δ𝑡

, 0, . . . , 0
)⊤

and 𝒃2 ≔

(
�̃�⊤

0
2Δ𝑡

, 0, . . . , 0
)⊤

.

From the first equation, we have 𝑽 = (𝐵 ⊗ 𝐼𝑥)𝑼 − 𝒃1. Substituting this into the
second equation gives (𝐵 ⊗ 𝐼𝑥)2𝑼 − 𝐴𝑼 = 𝒃2 + (𝐵 ⊗ 𝐼𝑥)𝒃1. A routine calculation
then yields 𝒃2 + (𝐵 ⊗ 𝐼𝑥)𝒃1 = 𝒃, and combining this with (𝐵 ⊗ 𝐼𝑥)2 = 𝐵2 ⊗ 𝐼𝑥 gives
the all-at-once system (3.41).

We now compare the ParaDiag I method with geometric time-stepping to the
method with BVM discretization applied to the wave equation (2.7) with homo-
geneous Dirichlet boundary conditions and 𝑇 = 0.5, discretized in space using
centred finite differences with Δ𝑥 = 1

40 . The errors for 𝑁𝑡 = 22 to 28 are shown in
Figure 3.12(a). We see that the error of ParaDiag I with geometric time-stepping
shows the typical deterioration due to roundoff around 𝑁𝑡 = 32, whereas Para-
Diag I with BVM discretization is of order 𝑂(Δ𝑡2) without any deterioration, like
the trapezoidal rule. In Figure 3.12(b) we show the corresponding condition num-
ber of the eigenvector matrix of the time-step matrix, which shows that ParaDiag I
with BVM discretization has a much lower condition number and explains why we
do not observe any deterioration.

To conclude this section, we show how to apply ParaDiag I to nonlinear problems.
We consider the first-order nonlinear system of ODEs (2.2), i.e. 𝒖′(𝑡) = 𝑓 (𝒖(𝑡), 𝑡)
with initial value 𝒖(0) = 𝒖0, nonlinear second-order problems can be treated
similarly. As in the linear case, the all-at-once system for this nonlinear problem is

(𝐵 ⊗ 𝐼𝑥)𝑼 − 𝐹(𝑼) = 𝒃, (3.42)
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Figure 3.12. (a) Measured error for the wave equation (2.7) using ParaDiag I with
the trapezoidal rule and geometric step sizes {Δ𝑡𝑛} and the BVM discretization
(3.38) with uniform time-step Δ𝑡 = 𝑇/𝑁𝑡 . (b) Condition number of the eigenvector
matrix of the time-stepping matrix.

where𝐹(𝑼) ≔ ( 𝑓 ⊤(𝒖1, 𝑡1), 𝑓 ⊤(𝒖2, 𝑡2), . . . , 𝑓 ⊤(𝒖𝑁𝑡
, 𝑡𝑁𝑡

))⊤, and 𝒃 is a suitable right-
hand side vector containing the initial condition and possible terms not depending
on the solution. The time-step matrix 𝐵 is either the one given in (3.23b) us-
ing variable time-steps, or the one given in (3.39b) corresponding to the BVM
discretization (3.38).

Since the problem (3.42) is nonlinear, we apply Newton’s method,

(𝐵 ⊗ 𝐼𝑥 − ∇𝐹(𝑼𝑘))(𝑼𝑘+1 −𝑼𝑘) = 𝒃 − ((𝐵 ⊗ 𝐼𝑥)𝑼𝑘 − 𝐹(𝑼𝑘)),

which can be simplified to

(𝐵 ⊗ 𝐼𝑥 − ∇𝐹(𝑼𝑘))𝑼𝑘+1 = 𝒃 − (∇𝐹(𝑼𝑘)𝑼𝑘 − 𝐹(𝑼𝑘)), (3.43a)

where 𝑘 ≥ 0 is the Newton iteration index, and

∇𝐹(𝑼𝑘) = blkdiag
(
∇ 𝑓
(
𝒖𝑘

1 , 𝑡1
)
, . . . ,∇ 𝑓

(
𝒖𝑘
𝑁𝑡
, 𝑡𝑁𝑡

))
, (3.43b)

with ∇ 𝑓 (𝒖𝑘
𝑛, 𝑡𝑛) being the Jacobian matrix of 𝑓 (𝒖, 𝑡𝑛) with respect to the first

variable 𝒖. To make the diagonalization technique still applicable, we have to
replace (or approximate) all the blocks {∇ 𝑓 (𝒖𝑘

𝑛, 𝑡𝑛)} by a single matrix 𝐴𝑘 . Inspired
by the idea in Gander and Halpern (2017), we consider an averaged Jacobian matrix,

𝐴𝑘 ≔
1
𝑁𝑡

𝑁𝑡∑︁
𝑛=1

∇ 𝑓 (𝒖𝑘
𝑛, 𝑡𝑛) or 𝐴𝑘 ≔ ∇ 𝑓

(
1
𝑁𝑡

𝑁𝑡∑︁
𝑛=1

𝒖𝑘
𝑛,

𝑇

𝑁𝑡

)
. (3.44)

Then we get a simple Kronecker-product approximation of ∇𝐹(𝑼𝑘) as

∇𝐹(𝑼𝑘) ≈ 𝐼𝑡 ⊗ 𝐴𝑘 .
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Figure 3.13. Error of ParaDiag I with BVM discretization (3.38) for Burgers’
equation (2.6) with two values of the diffusion parameter 𝜈. For each value of 𝑇 ,
the number of time-steps is fixed to 𝑁𝑡 = 𝑇/Δ𝑡 = 200. The horizontal line denotes
the approximate space–time discretization error max{Δ𝑡2,Δ𝑥2} = 10−4.

By substituting this into (3.43a), we obtain the quasi-Newton method

(𝐵 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ 𝐴𝑘)𝑼𝑘+1 = 𝒃 − ((𝐼𝑡 ⊗ 𝐴𝑘)𝑼𝑘 − 𝐹(𝑼𝑘)). (3.45)

Convergence of such quasi-Newton methods is well understood; see e.g. Deuflhard
(2004, Theorem 2.5) and Ortega and Rheinboldt (2000).

In this quasi-Newton method (3.45), the Jacobian system can also be solved
parallel in time: with the diagonalization 𝐵 = 𝑉𝐷𝑉−1, we solve 𝑼𝑘+1 in (3.45)
again in three steps,

𝑼𝑎 = (𝑉−1 ⊗ 𝐼𝑥)𝒓𝑘 , (step a)
(𝜆𝑛𝐼𝑥 − 𝐴𝑘)𝒖𝑏

𝑛 = 𝒖𝑎
𝑛 , 𝑛 = 1, 2, . . . , 𝑁𝑡 , (step b)

𝑼𝑘+1 = (𝑉 ⊗ 𝐼𝑥)𝑼𝑏, (step c)
(3.46)

where 𝒓𝑘 ≔ 𝒃 − ((𝐼𝑡 ⊗ 𝐴𝑘)𝑼𝑘 − 𝐹(𝑼𝑘). In the linear case, i.e. 𝑓 (𝒖, 𝑡) = 𝐴𝒖 + 𝒈(𝑡),
we have 𝐴𝑘 = 𝐴 and 𝒓𝑘 = 𝒃, and (3.46) reduces to (3.25).

The convergence rate of the quasi-Newton method depends on the accuracy of
the approximation of the average matrix 𝐴𝑘 to all 𝑁𝑡 Jacobian blocks ∇ 𝑓 (𝒖𝑘

𝑛, 𝑡𝑛).
One can imagine that if ∇ 𝑓 (𝑢𝑘𝑛, 𝑡𝑛) changes dramatically for 𝑛 = 1, 2, . . . , 𝑁𝑡 , any
single matrix cannot be a good approximation. In this case we can divide the
time interval [0, 𝑇] into multiple smaller windows and apply ParaDiag I to these
time windows sequentially. We tested this approach by combining ParaDiag I with
the BVM discretization (3.38) for Burgers’ equation (2.6) with periodic boundary
conditions. We discretized in space using centred finite differences with mesh
size Δ𝑥 = 0.01. In time, both the time-step size Δ𝑡 and the length of the time
interval 𝑇 were varied simultaneously, maintaining a fixed number of time-steps,
𝑁𝑡 = 𝑇/Δ𝑡 = 200. In Figure 3.13, we present the convergence histories for two
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Table 3.2. Number of total Jacobian solves for the sequential trapezoidal
rule and ParaDiag I with BVM discretization in parallel.

𝑇 0.1 0.2 0.4 0.8 1.6

𝜈 = 0.1 trapezoidal rule 401 401 403 419 443
ParaDiag I 5 5 6 7 7

𝜈 = 0.002 trapezoidal rule 400 446 476 460 526
ParaDiag I 7 12 22 × ×

values of the diffusion parameter 𝜈 and several values of 𝑇 . Note the dependence
of the convergence rate on 𝑇 , especially when 𝜈 is small. For 𝜈 = 0.1, ParaDiag I
has similar convergence rates when 𝑇 increases, indicating that the Jacobian matrix
∇ 𝑓 (𝑢, 𝑡) has smaller variations for (𝑡, 𝑢) ∈ {(𝑡1, 𝑢1), (𝑡2, 𝑢𝑛), . . . , (𝑡𝑁𝑡

, 𝑢𝑁𝑡
)}.

The major computation in ParaDiag I is solving the 𝑁𝑡 independent Jacobian
systems in step b of (3.46). Assuming the method reaches the stopping criterion
after 𝑘 iterations, the total number of Jacobian solves is 𝑘 , given that we have access
to 𝑁𝑡 processors and each of them handles one Jacobian system in step b. On the
other hand, in a time-stepping mode, we would need to solve

∑𝑁𝑡

𝑛=1 It𝑛 Jacobian
systems, where It𝑛 represents the number of Newton iterations performed at the 𝑛th
time-step. Table 3.2 shows a comparison of the total number of parallel Jacobian
solves in ParaDiag I with BVM discretization, and when using the trapezoidal rule
sequentially. We see the clear computational advantage of ParaDiag I with BVM
discretization, especially when convergence is rapid.

An idea recently proposed in Liu and Wu (2022, Section 3.3) to accelerate
nonlinear ParaDiag II, which we will see in the next section, can also be used to
accelerate nonlinear ParaDiag I: instead of using a single matrix 𝐴𝑘 to approximate
all the blocks {∇ 𝑓 (𝒖𝑘

𝑛, 𝑡𝑛)} (see (3.44)), we approximate ∇𝐹(𝑼𝑘) by using a tensor
structure matrix Φ𝑘 ⊗ 𝐴𝑘 with a diagonal matrix Φ𝑘 determined by minimizing

min
Φ𝑘=diag(𝜙1,𝜙2,...,𝜙𝑁𝑡 )

∥∇𝐹(𝑼𝑘) −Φ𝑘 ⊗ 𝐴𝑘 ∥, (3.47)

where 𝐴𝑘 is the averaging matrix given in (3.44). For the Frobenius norm ∥ · ∥𝐹 , the
solution of this minimization problem is known as the nearest Kronecker product
approximation (NKA), given by Van Loan and Pitsianis (1993, Theorem 3),

𝜙𝑛 =
trace

((
∇ 𝑓
(
𝒖𝑘
𝑛, 𝑡𝑛

))⊤
𝐴𝑘

)
trace

(
𝐴⊤
𝑘
𝐴𝑘

) , 𝑛 = 1, 2, . . . , 𝑁𝑡 , (3.48)

under the assumption that trace
(
𝐴⊤
𝑘
𝐴𝑘

)
> 0. This leads to the quasi-Newton
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Figure 3.14. Error of the two quasi-Newton versions of ParaDiag I with BVM
discretization (3.38) for Burgers’ equation (2.6) with two values of the diffusion
parameter 𝜈.

iteration

(𝐵 ⊗ 𝐼𝑥 −Φ𝑘 ⊗ 𝐴𝑘)𝑼𝑘+1 = 𝒃 − ((Φ𝑘 ⊗ 𝐴𝑘)𝑼𝑘 − 𝐹(𝑼𝑘)),

which, after multiplying both sides by the matrix 𝐵−1 ⊗ 𝐼𝑥 , can be represented as

(𝐼𝑡 ⊗ 𝐼𝑥 − 𝐵−1Φ𝑘 ⊗ 𝐴𝑘)𝑼𝑘+1 = (𝐵−1 ⊗ 𝐼𝑥)(𝒃 + 𝐹(𝑼𝑘)) − (𝐵−1Φ𝑘 ⊗ 𝐴𝑘)𝑼𝑘 .

By diagonalizing 𝐵−1Φ𝑘 as 𝑉diag(𝜆1, 𝜆2, . . . , 𝜆𝑁𝑡
)𝑉−1, we can solve 𝑼𝑘+1 via the

three-step diagonalization procedure (3.46) as well, where for step b we now have
to solve the linear systems

(𝐼𝑥 − 𝜆𝑛𝐴𝑘)𝒖𝑏
𝑛 = 𝒖𝑎

𝑛 , 𝑛 = 1, 2, . . . , 𝑁𝑡 .

So far there is no theory for the diagonalization of 𝐵−1Φ𝑘 , but in practice this
matrix is often diagonalizable and 𝑉 is generally well-conditioned.

In practice, it is better not to compute the scaling factors {𝜙𝑛} for each Newton
iteration, which can be rather expensive due to the matrix–matrix multiplications in
(3.48). It suffices to compute these quantities only once before starting the Newton
iteration (i.e. as an offline task) by using a reduced model. For time-dependent
PDEs, such a model could be a semi-discretized system of ODEs obtained by
using a coarse space grid. We now show this idea for Burgers’ equation (2.6) with
periodic boundary conditions, discretized by a centred finite difference scheme with
mesh size Δ𝑥 = 1

200 . The scaling factors {𝜙𝑛} were determined by the trapezoidal
rule with a coarse mesh size Δ𝑋 = 1

20 . In Figure 3.14 we show for two values of
the diffusion parameter 𝜈 how the error decays for the two quasi-Newton versions
of ParaDiag I with BVM discretization (3.38). For each 𝜈 we consider two time
interval lengths, 𝑇 = 0.7 and 𝑇 = 1.3. Clearly the quasi-Newton version with the
NKA technique improves the convergence rate, especially when 𝑇 = 1.3.
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3.5.2. Iterative ParaDiag methods (ParaDiag II)
It is difficult to generalize ParaDiag I to high-order time-integrators such as
multistage Runge–Kutta methods. This is not the case for the class of ParaDiag II
methods, which use approximations of the time-stepping matrices in order to make
them diagonalizable, and then solve the all-at-once system by iteration.

The first member in the ParaDiag II class of methods was proposed in McDonald
et al. (2018) at the discrete level, and independently in Gander and Wu (2019) at
the continuous level. Although these two papers describe essentially the same
method, the descriptions themselves are quite different. McDonald et al. (2018)
considered the approximate solution of the first-order linear system of ODEs (2.1)
using a linear multistep method with 𝑚-steps,

𝑚∑︁
𝑙=0

𝑎𝑙𝒖𝑛−𝑙 = Δ𝑡

𝑚∑︁
𝑙=0

𝑏𝑙(𝐴𝒖𝑛−𝑙) + �̄�𝑛, 𝑛 = 1, . . . , 𝑁𝑡 ,

where we assume that the first 𝑚 initial values {𝒖−(𝑚−1), 𝒖−(𝑚−2), . . . , 𝒖0} are
given. The all-at-once system of these 𝑁𝑡 difference equations is K𝑼 = 𝒃 with
𝑼 ≔ (𝒖⊤

1 , . . . , 𝒖
⊤
𝑁𝑡

)⊤ and K ≔ 𝐵1 ⊗ 𝐼𝑥 −𝐵2 ⊗ (Δ𝑡𝐴), where 𝒃 is a vector depending
on the initial values and the source term 𝒈(𝑡), and

𝐵1 ≔



𝑎0
𝑎1 𝑎0
...

. . .
. . .

𝑎𝑚
. . .

. . .

. . . 𝑎1 𝑎0
𝑎𝑚 . . . 𝑎1 𝑎0


, 𝐵2 ≔



𝑏0
𝑏1 𝑏0
...

. . .
. . .

𝑏𝑚
. . .

. . .

. . . 𝑏1 𝑏0
𝑎𝑚 . . . 𝑏1 𝑏0


.

McDonald et al. (2018) solved this all-at-once system with GMRES using a pre-
conditioner P for K obtained by replacing the two time-stepping matrices 𝐵1 and
𝐵2 with two circulant matrices of Strang type, that is,

P ≔ 𝐶1 ⊗ 𝐼𝑥 − 𝐶2 ⊗ (Δ𝑡𝐴),

where

𝐶1 ≔



𝑎0 𝑎𝑚 . . . 𝑎1 𝑎0
𝑎1 𝑎0 𝑎1
...

. . .
. . .

. . .
...

𝑎𝑚
. . .

. . . 𝑎𝑚
. . . 𝑎1 𝑎0

𝑎𝑚 . . . 𝑎1 𝑎0


, 𝐶2 ≔



𝑏0 𝑏𝑚 . . . 𝑏1 𝑏0
𝑏1 𝑏0 𝑏1
...

. . .
. . .

. . .
...

𝑏𝑚
. . .

. . . 𝑏𝑚
. . . 𝑏1 𝑏0

𝑏𝑚 . . . 𝑏1 𝑏0


.
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For a theoretical understanding, or if the preconditioner P is very good (such as
multigrid for Poisson problems), one can use it directly in the stationary iteration

PΔ𝑼𝑘 = 𝒓𝑘 ≔ 𝒃 −K𝑼𝑘 , 𝑼𝑘+1 = 𝑼𝑘 + Δ𝑼𝑘 , 𝑘 = 0, 1, . . . , (3.49)

and the asymptotic convergence is fast if 𝜌(P−1K) ≪ 1. If convergence is not
fast, this process can be accelerated using the preconditioner P within a Krylov
method, i.e. solving the preconditioned linear system P−1K𝑼 = P−1𝒃 with a
Krylov method; see Ciaramella and Gander (2022, Section 4.1) for a simple intro-
duction. This can even work when 𝜌(P−1K) ≥ 1, and is advantageous when the
spectrum 𝜎(P−1K) is clustered.

The first advantage of using the block-circulant matrix P as a preconditioner is
that, similar to ParaDiag I, for each iteration, the preconditioning step P−1𝒓𝑘 can
be solved via the diagonalization procedure, because any two circulant matrices
𝐶1 and 𝐶2 are commutative and can therefore be diagonalized simultaneously (Ng
2004, Chapter 4), that is,

𝐶𝑙 = F∗𝐷𝑙F, 𝑙 = 1, 2,

where F is the discrete Fourier matrix defined as (F∗ is the conjugate transform
of F)

F ≔
1

√
𝑁𝑡


1 1 . . . 1
1 𝜔 · · · 𝜔𝑁𝑡−1

...
... · · ·

...

1 𝜔𝑁𝑡−1 · · · 𝜔(𝑁𝑡−1)2


, 𝜔 ≔ exp

(
2𝜋i
𝑁𝑡

)
, (3.50)

and 𝐷𝑙 ≔ diag(𝜆𝑙,1, 𝜆𝑙,2, . . . , 𝜆𝑙,𝑁𝑡
) contains the eigenvalues of 𝐶𝑙, that is,

𝐷𝑙 = diag
(√︁

𝑁𝑡F𝐶𝑙(:, 1)
)
, 𝑙 = 1, 2. (3.51)

Then, according to the property of the Kronecker product, we can factor P =

(F∗ ⊗ 𝐼𝑥)(𝐷1 ⊗ 𝐼𝑥 −𝐷2 ⊗ (Δ𝑡𝐴))(F ⊗ 𝐼𝑥) and thus we can compute P−1𝒓𝑘 by again
performing three steps:

𝑼𝑎 = (F ⊗ 𝐼𝑥)𝒓𝑘 , (step a)
(𝜆1,𝑛𝐼𝑥 − 𝜆2,𝑛Δ𝑡𝐴)𝒖𝑏

𝑛 = 𝒖𝑎
𝑛 , 𝑛 = 1, 2, . . . , 𝑁𝑡 , (step b)

𝑼 = (F∗ ⊗ 𝐼𝑥)𝑼𝑏 . (step c)
(3.52)

Here the first and last steps can be computed efficiently using the fast Fourier trans-
form (FFT), with𝑂(𝑁𝑥𝑁𝑡 log 𝑁𝑡 ) operations, and as in all ParaDiag methods, step b
can be computed in parallel, since all linear systems are completely independent of
each other at different time points.

McDonald et al. (2018, Section 3) obtained an important result about the clus-
tering of eigenvalues of the preconditioned matrix P−1K when this ParaDiag II
technique is used to precondition a system for its solve by a Krylov method.
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Theorem 3.8. When 𝐴 ∈ R𝑁𝑥×𝑁𝑥 is symmetric negative definite, the precondi-
tioned matrix P−1K has at most 𝑚𝑁𝑥 eigenvalues not equal to 1.

This implies that GMRES converges in at most 𝑚𝑁𝑥 + 1 steps for the all-at-once
system K𝑼 = 𝒃 using P as a preconditioner. Note, however, that when 𝑁𝑥 is
large, this result does not guarantee fast convergence of GMRES, and moreover,
if 𝐴 is not symmetric, the clustering of 𝜎(P−1K) becomes worse. To illustrate
this, we consider three examples: the heat equation (2.3), the advection–diffusion
equation (2.5) with two values of the diffusion parameter 𝜈, and the second-order
wave equation (2.7). We use homogeneous Dirichlet boundary conditions and the
initial condition 𝑢(𝑥, 0) = sin(2𝜋𝑥) for all PDEs, and for the wave equation we set
𝜕𝑡𝑢(𝑥, 0) = 0.

The semi-discrete system of ODEs using centred finite differences is of the form
(2.1) for the first-order parabolic problems, and for the second-order wave equation
we get

𝒖′′(𝑡) = 𝐴𝒖(𝑡), 𝒖(0) = 𝒖0, 𝒖′(0) = 0, 𝑡 ∈ (0, 𝑇], (3.53)

where 𝐴 = Tri[1 − 2 1]/Δ𝑥2. We solve the first-order system of ODEs (2.1)
using the trapezoidal rule, and the second-order system of ODEs (3.53) using a
parametrized Numerov-type method (Chawla 1983),

�̃�𝑛 − 𝒖𝑛 + 𝛾Δ𝑡2𝐴(𝒖𝑛+1 − 2𝒖𝑛 + 𝒖𝑛−1) = 0,

𝒖𝑛+1 − 2𝒖𝑛 + 𝒖𝑛−1 −
Δ𝑡2𝐴

12
(𝒖𝑛+1 + 10�̃�𝑛 + 𝒖𝑛) = 0,

(3.54)

where 𝛾 > 0 is a parameter. For 𝛾 = 0, (3.54) reduces to the classical Numerov
method, which is a fourth-order method but only conditionally stable. With 𝛾 ≥ 1

120 ,
this method is unconditionally stable and still fourth-order.

Let 𝑇 = 2, Δ𝑡 = 1
50 , Δ𝑥 = 1

100 and 𝛾 = 1
100 . In Figure 3.15 we show the

eigenvalues of the preconditioned matrix P−1K for these three PDEs, and the
decay of the residual as function of the iteration number of the preconditioned
GMRES solver. We see that for a wide range of problems, the block-circulant
matrix P is a good preconditioner, even for the advection-dominated diffusion
equation with a small diffusion parameter 𝜈 = 10−3. However, if we continue to
reduce 𝜈, Figure 3.15(c,d) shows that the preconditioner P becomes worse, and
ultimately it loses its power when we switch to the hyperbolic problem represented
by the wave equation.

During the same time, and independently of the work in McDonald et al. (2018),
another diagonalization-based time parallel method was proposed in Gander and
Wu (2019) within the framework of waveform relaxation. It is constructed at the
continuous level by using a head–tail coupled condition,

𝒖𝑘
𝑡 (𝑡) = 𝐴𝒖𝑘(𝑡) + 𝒈(𝑡), 𝒖𝑘(0) = 𝛼[𝒖𝑘(𝑇) − 𝒖𝑘−1(𝑇)] + 𝒖0, (3.55)

where 𝛼 ∈ C is a free parameter. Upon convergence, we recover the solution
to the initial value problem (2.1), i.e. 𝒖𝑡 (𝑡) = 𝐴𝒖(𝑡) + 𝒈(𝑡) with 𝒖(0) = 𝒖0. For
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Figure 3.15. Spectra of the preconditioned matrix P−1K (a, c, e) and the measured
convergence of preconditioned GMRES (b, d, f) for the three representative PDEs.
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the second-order problem (2.7), the iteration (3.55) can be defined similarly by
reducing the problem to a first-order system. The advantage of this iteration is that
we can solve each iterate 𝒖𝑘(𝑡) independently for all the time-steps. To see this,
we need to take a closer look at the structure of the discrete system stemming from
(3.55). Suppose we discretize (3.55) using a one-step time-integrator specified by
two matrices 𝑟1(Δ𝑡𝐴) and 𝑟2(Δ𝑡𝐴),{

𝑟1(Δ𝑡𝐴)𝒖𝑘
𝑛 = 𝑟2(Δ𝑡𝐴)𝒖𝑘

𝑛−1 + �̃�𝑛, 𝑛 = 1, . . . , 𝑁𝑡 ,

𝒖𝑘
0 = 𝛼

(
𝒖𝑘
𝑁𝑡

− 𝒖𝑘−1
𝑁𝑡

)
+ 𝒖0,

(3.56)

where 𝑁𝑡 = 𝑇/Δ𝑡, 𝒖0 is a given initial value and �̃�𝑛 ∈ R𝑁𝑥 is a vector coming from
the source term 𝒈(𝑡). Examples for 𝑟1(Δ𝑡𝐴) and 𝑟2(Δ𝑡𝐴) are


𝑟1 = 𝐼𝑥 − Δ𝑡𝐴, 𝑟2 = 𝐼𝑥 , backward Euler,

𝑟1 = 𝐼𝑥 −
1
2
Δ𝑡𝐴, 𝑟2 = 𝐼𝑥 +

1
2
Δ𝑡𝐴, trapezoidal rule.

(3.57)

By replacing 𝒖𝑘
0 with 𝛼

(
𝒖𝑘
𝑁𝑡

− 𝒖𝑘−1
𝑁𝑡

)
+ 𝒖0 for 𝑛 = 1, we can unfold (3.56) as



𝑟1(Δ𝑡𝐴)𝒖𝑘
1 − 𝛼𝑟2(Δ𝑡𝐴)𝒖𝑘

𝑁𝑡
= 𝛼𝑟2(Δ𝑡𝐴)𝒖𝑘−1

𝑁𝑡
+ 𝑟2(Δ𝑡𝐴)𝒖0 + �̃�1,

𝑟1(Δ𝑡𝐴)𝒖𝑘
2 − 𝑟2(Δ𝑡𝐴)𝒖𝑘

1 = �̃�2,

𝑟1(Δ𝑡𝐴)𝒖𝑘
3 − 𝑟2(Δ𝑡𝐴)𝒖𝑘

2 = �̃�3,
...

𝑟1(Δ𝑡𝐴)𝒖𝑘
𝑁𝑡

− 𝑟2(Δ𝑡𝐴)𝒖𝑘
𝑁𝑡−1 = �̃�𝑁𝑡

.

We see that all the discrete unknowns 𝒖1, 𝒖2, . . . , 𝒖𝑁𝑡
are coupled together and

therefore we have to solve them in one shot. To this end, we represent these 𝑁𝑡

equations as

P𝛼𝑼
𝑘 = 𝒃𝑘 , (3.58a)

where 𝑼𝑘 ≔
((
𝒖𝑘

1
)⊤

, . . . ,
(
𝒖𝑘
𝑁𝑡

)⊤)⊤ and 𝒃𝑘 is a vector consisting of

𝒃𝑘 ≔ 𝒃 − 𝛼


𝑟2(Δ𝑡𝐴)𝒖𝑘−1

𝑁𝑡

0
...

0


, 𝒃 ≔


𝑟2(Δ𝑡𝐴)𝒖0 + �̃�1

�̃�2
...

�̃�𝑁𝑡


. (3.58b)
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The matrix P𝛼 is given by

P𝛼 ≔


𝑟1(Δ𝑡𝐴) −𝛼𝑟2(Δ𝑡𝐴)
−𝑟2(Δ𝑡𝐴) 𝑟1(Δ𝑡𝐴)

. . .
. . .

−𝑟2(Δ𝑡𝐴) 𝑟1(Δ𝑡𝐴)


= 𝐼𝑡 ⊗ 𝑟1(Δ𝑡𝐴) − 𝐶𝛼 ⊗ 𝑟2(Δ𝑡𝐴),

𝐶𝛼 ≔


0 𝛼

1 0
. . .

. . .

1 0


∈ R𝑁𝑡×𝑁𝑡 .

(3.58c)

The matrix 𝐶𝛼 is known as an 𝛼-circulant matrix, which, similarly to the standard
circulant matrix where 𝛼 = 1, can be diagonalized by an eigenvector matrix 𝑉𝛼

that depends only on 𝛼. Specifically, according to Bini, Latouche and Meini (2005,
Theorem 2.10), for an arbitrary 𝛼-circulant matrix 𝐶𝛼 of Strang type, we have the
spectral decomposition

𝐶𝛼 = 𝑉𝛼𝐷𝛼𝑉
−1
𝛼 , (3.59a)

where the diagonal eigenvalue matrix and the eigenvector matrix 𝑉𝛼 are given by

𝐷𝛼 = diag(
√︁
𝑁𝑡FΛ𝛼𝐶𝛼(:, 1)),

𝑉𝛼 = Λ𝛼F∗, Λ𝛼 ≔ diag
(
1, 𝛼−1/𝑁𝑡 , . . . , 𝛼−(𝑁𝑡−1)/𝑁𝑡

)
,

(3.59b)

and𝐶𝛼(:, 1) represents the first column of𝐶𝛼. Using the property of the Kronecker
product, we can factor P𝛼 as

P𝛼 = (𝑉𝛼 ⊗ 𝐼𝑥)(𝐼𝑡 ⊗ 𝑟1(Δ𝑡𝐴) − 𝐷𝛼 ⊗ 𝑟2(Δ𝑡𝐴))(𝑉−1
𝛼 ⊗ 𝐼𝑥),

and hence again solve as in all ParaDiag methods for 𝑼𝑘 in (3.58a) using three
steps: 

𝑼𝑎 = (𝑉−1
𝛼 ⊗ 𝐼𝑥)𝒃𝑘 , (step a)

(𝑟1(Δ𝑡𝐴) − 𝜆𝑛𝑟2(Δ𝑡𝐴))𝒖𝑏
𝑛 = 𝒖𝑎

𝑛 , 𝑛 = 1, 2, . . . , 𝑁𝑡 , (step b)
𝑼𝑘 = (𝑉𝛼 ⊗ 𝐼𝑥)𝑼𝑏 . (step c)

(3.60)

When 𝛼 = 1, the eigenvector matrix becomes the Fourier matrix, 𝑉𝛼 = F∗, and
hence this ParaDiag II method obtained from the discretization of the continuous
formulation (3.55) coincides with (3.52) from McDonald et al. (2018), and since
𝑉𝛼 ⊗ 𝐼𝑥 = (Λ𝛼 ⊗ 𝐼𝑥)(F∗ ⊗ 𝐼𝑥) and 𝑉−1

𝛼 ⊗ 𝐼𝑥 = (F ⊗ 𝐼𝑥)(Λ−1
𝛼 ⊗ 𝐼𝑥), we can still use

FFT techniques for the first and last step, also when 𝛼 ≠ 1.
Gander and Wu (2019) examined the convergence of the waveform relaxation

iterations (3.55) at the continuous level, and showed that the error 𝒖𝑘(𝑡)−𝒖(𝑡) decays
rapidly for both first-order and second-order problems, with a rate depending on 𝛼.
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Figure 3.16. Error as a function of iteration for the head–tail coupled waveform
relaxation method (3.55) using two values of the parameter 𝛼 and the trapezoidal
rule.

We illustrate this in Figure 3.16, where the data for the two PDEs are the same as
those used in Figure 3.15, but using periodic boundary conditions. For this type
of boundary conditions, the preconditioner P with the special choice 𝛼 = 1 as
proposed in McDonald et al. (2018) is singular and cannot be used, so we need to
use 𝛼 < 1. We see that the introduction of the parameter 𝛼 makes this ParaDiag II
method a very powerful solver, which also works very well for highly advection-
dominated problems as well as the hyperbolic wave equation – and this without
Krylov acceleration!

Gander and Wu (2019) studied two time-integrators, backward Euler and the
trapezoidal rule, and showed that the discrete algorithm (3.56) preserves the con-
vergence rate obtained from the analysis at the continuous level. The proof is
technical and relies on a special representation of 𝑟−1

1 (Δ𝑡𝐴)𝑟2(Δ𝑡𝐴) that appears to
hold only for these two specific time-integrators (see (3.57) for the formulas of 𝑟1
and 𝑟2).

The head–tail coupled waveform relaxation method at the discrete level (3.56)
can be represented as the preconditioned stationary iteration

P𝛼Δ𝑼
𝑘−1 = 𝒓𝑘−1 ≔ 𝒃 −K𝑼𝑘−1, 𝑼𝑘 = 𝑼𝑘−1 + Δ𝑼𝑘−1, 𝑘 = 1, 2, . . . , (3.61)

where

K ≔


𝑟1(Δ𝑡𝐴)
−𝑟2(Δ𝑡𝐴) 𝑟1(Δ𝑡𝐴)

. . .
. . .

−𝑟2(Δ𝑡𝐴) 𝑟1(Δ𝑡𝐴)


= 𝐼𝑡 ⊗ 𝑟1(Δ𝑡𝐴) − 𝐵 ⊗ 𝑟2(Δ𝑡𝐴),

(3.62a)
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and 𝐵 ∈ R𝑁𝑡×𝑁𝑡 is a Toeplitz matrix,

𝐵 ≔


0
1 0

. . .
. . .

1 0


. (3.62b)

We thus see that the preconditioned iteration (3.61) with 𝛼 = 1 is precisely the
method (3.49) of McDonald et al. (2018). For 𝛼 ∈ (0, 1) the preconditioned
iteration is the parallel method proposed by Banjai and Peterseim (2012). To see
why the preconditioned iteration (3.61) equals the head–tail coupled waveform
relaxation method (3.56), we notice that the vector 𝒃𝑘 in (3.62b) can be represented
as 𝒃𝑘 = (P𝛼 − K)𝑼𝑘−1 + 𝒃, and substituting this into (3.62a) gives P𝛼𝑼

𝑘 =

(P𝛼 −K)𝑼𝑘−1 + 𝒃, which leads to (3.61).
Applying a one-step time-integrator specified by 𝑟1(Δ𝑡𝐴) and 𝑟2(Δ𝑡𝐴) to the

initial value problem (2.1), i.e. 𝒖′(𝑡) = 𝐴𝒖(𝑡) + 𝒈(𝑡) with 𝒖(0) = 𝒖0, leads to

𝑟1(Δ𝑡𝐴)𝒖𝑛 = 𝑟2(Δ𝑡𝐴)𝒖𝑛−1 + �̃�𝑛, 𝑛 = 1, . . . , 𝑁𝑡 . (3.63)

Therefore the matrix K is an all-at-once representation of these 𝑁𝑡 difference
equations, i.e. K𝑼 = 𝒃. From this point of view, P𝛼 is a generalized block
circulant preconditioner for K.

For second-order problems of the form 𝒖′′(𝑡) = 𝐴𝒖(𝑡) + 𝒈(𝑡) with initial values
𝒖(0) = 𝑢0 and �̃�(0) = �̃�0, we can introduce 𝒗(𝑡) = 𝒖′(𝑡) to transform them
into a larger first-order system of ODEs, and then apply ParaDiag II. However,
this approach doubles the memory requirements at each time-step, which can
be problematic in cases of very fine spatial mesh sizes or for high-dimensional
problems. In that case it can be preferable to discretize the second-order problem
directly, and we consider the symmetric two-step method

𝑟1(Δ𝑡2𝐴)𝒖𝑛+1 − 𝑟2(Δ𝑡2𝐴)𝒖𝑛 + 𝑟1(Δ𝑡2𝐴)𝒖𝑛−1 = �̃�𝑛, 𝑛 = 1, . . . , 𝑁𝑡 − 1, (3.64)

assuming that the second initial value 𝒖1 is given. Examples of the matrices 𝑟1 and
𝑟2 are

𝑟1(Δ𝑡2𝐴) = 𝐼𝑥 −
Δ𝑡2𝐴

12
+ 10𝛾(Δ𝑡2𝐴)2

12
,

𝑟2(Δ𝑡2𝐴) = 2𝐼𝑥 +
10Δ𝑡2𝐴

12
+ 20𝛾(Δ𝑡2𝐴)2

12
,

if we use the Numerov-type method from (3.54) as the time-integrator. For (3.64),
the all-at-once matrix and the corresponding preconditioner are

K = �̃� ⊗ 𝑟1(Δ𝑡2𝐴) − 𝐵 ⊗ 𝑟2(Δ𝑡2𝐴),
P𝛼 = �̃�𝛼 ⊗ 𝑟1(Δ𝑡2𝐴) − 𝐶𝛼 ⊗ 𝑟2(Δ𝑡2𝐴),

(3.65a)

where 𝐵 is the Toeplitz matrix from (3.62b), and 𝐶𝛼 is the 𝛼-circulant matrix of 𝐵
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(see (3.58c)). The matrices �̃� and �̃�𝛼 are defined as

�̃� ≔



1
0 1
1 0 1

. . .
. . .

. . .

1 0 1


, �̃�𝛼 ≔



1 𝛼

0 1 𝛼

1 0 1
. . .

. . .
. . .

1 0 1


. (3.65b)

According to (3.59a)–(3.59b), we can simultaneously diagonalize 𝐶𝛼 and �̃�𝛼.
Thus, for the stationary iteration (3.61), we can solve the preconditioning step
P−1

𝛼 𝒓𝑘 using the diagonalization procedure (see (3.60)) as well.
The preconditioner P𝛼 used in the ParaDiag II method involves substituting the

Toeplitz matrix within the all-at-once matrix K with a circulant (or 𝛼-circulant)
matrix, while keeping the space matrices unchanged. This substitution, which
approximates a pointwise Toeplitz matrix 𝐵 by a circulant (or 𝛼-circulant) matrix
𝐶, is a natural approach that dates back to Strang (1986). The spectrum of the
preconditioned matrix 𝐶−1𝐵 has been extensively examined by researchers over
the past three decades, yielding fruitful results; for more details, see the survey
paper by Chan and Ng (1996) and the monographs by Ng (2004) and Bini et al.
(2005).

For blockwise Toeplitz matrices, where all blocks are Toeplitz (referred to as
BTTB matrices), the circulant preconditioner is obtained by approximating each
block by a circulant matrix, analogous to the approach used in ParaDiag II. Spectral
analyses of such preconditioned matrices can be found in Chan and Ng (1996) and
Ng (2004). However, in the context of ParaDiag II, the blocks (e.g. 𝑟1(Δ𝑡𝐴) and
𝑟2(Δ𝑡𝐴) in (3.57)) are not Toeplitz. In this scenario, there is a lack of systematic
results regarding the eigenvalues of P−1

𝛼 K, and the work in McDonald et al. (2018)
explores this for 𝛼 = 1.

Since McDonald et al. (2018) and Gander and Wu (2019), a lot of effort has been
put into analysing the spectrum of P−1

𝛼 K. Examples include the work of Gu and
Wu (2020), Lin and Ng (2021), Wu and Zhou (2021a,b), Danieli, Southworth and
Wathen (2022), Bouillon, Samaey and Meerbergen (2024) and Heinzelreiter and
Pearson (2024) for parabolic problems, and Danieli and Wathen (2021) and Liu
and Wu (2020) for hyperbolic problems. The analyses are intricate and rely heavily
on special properties of the time-integrator, such as sparsity, Toeplitz structure and
diagonal dominance of the time-stepping matrix.

A comprehensive spectral analysis of the preconditioned matrix P−1
𝛼 K for both

first-order and second-order problems can be found in Wu, Zhou and Zhou (2022),
with results that hold for any stable one-step time-integrator for first-order systems
of ODEs, and any two-step symmetric time-integrator for second-order systems of
ODEs.

Theorem 3.9. For the first-order system of ODEs 𝒖′(𝑡) = 𝐴𝒖(𝑡)+ 𝒈(𝑡), if the one-
step time-integrator (3.63) is stable, i.e. |𝑟−1

1 (𝑧)𝑟2(𝑧)| ≤ 1 for 𝑧 ∈ 𝜎(Δ𝑡𝐴) ⊂ C−,
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then the eigenvalues of the preconditioned matrix satisfy

1
1 − 𝛼

≤ |𝜆(P−1
𝛼 K)| ≤ 1

1 + 𝛼
, (3.66)

where K is the all-at-once matrix of the time-integrator (3.63), and P𝛼 is the block
𝛼-circulant matrix given by (3.58c) with 𝛼 ∈ (0, 1). Similarly, for the second-order
system of ODEs 𝒖′′(𝑡) = 𝐴𝒖(𝑡) + 𝒈(𝑡), if the two-step method (3.64) is stable, i.e.
|𝑟−1

1 (𝑧)𝑟2(𝑧)| ≤ 2 (for all 𝑧 ∈ 𝜎(Δ𝑡2𝐴) ⊂ R− and |𝑟−1
1 (𝑧)𝑟2(𝑧)| = 2 only if 𝑧 = 0),

then the eigenvalues of the preconditioned matrix P−1
𝛼 K (with P and K given by

(3.65a)–(3.65b)) also satisfy the bounds in (3.66).

For the stationary iteration (3.61), the iteration matrix M is given by

M = I − P−1
𝛼 K, (3.67)

and based on (3.66), we get 𝜌(M) ≤ 𝛼/(1 − 𝛼). This explains the faster conver-
gence of the ParaDiag II head–tail waveform relaxation method (3.55) when 𝛼 is
small, as we have seen in Figure 3.16. The stability of the underlying time-integrator
serves as a sufficient condition for the eigenvalue bounds of the preconditioned mat-
rix P−1

𝛼 K in Theorem 3.9, or equivalently the iteration matrix M. Numerically,
we find that stability is also a necessary condition. We illustrate this now for the
Numerov-type method (3.54) applied to a second-order problem with 𝐴 being a
centred finite difference discretization of the Laplacian with Dirichlet boundary
conditions, that is,

1
Δ𝑥2 𝐴 ≈ 𝜕𝑥𝑥 .

Setting Δ𝑡 = 1
16 , Δ𝑥 = 1

128 , and 𝛼 = 0.02, Figure 3.17 shows the eigenvalues of the
iteration matrix M for 𝑇 = 0.5, 10 and 20, using the two values 𝛾 = 1

120 and 𝛾 =
1

120.01 for the Numerov-type method, where according to Chawla (1983), 𝛾 = 1
120

represents a stability threshold for the Numerov-type method. For this threshold
value (Figure 3.17(a–c)), all eigenvalues of M lie within the theoretically analysed
circle. However, with 𝛾 = 1

120.01 (slightly below the threshold), the Numerov-type
method loses unconditional stability, and the results in Figure 3.17(d–f) clearly
indicate that the eigenvalue bounds (3.66) no longer hold for large 𝑇 .

The eigenvalue bounds (3.66) indicate that the ParaDiag II method converges
faster when 𝛼 decreases. This is true within a certain range of 𝛼, such as
𝛼 ∈ [10−3, 10−1], as shown earlier (see Figure 3.16). However, 𝛼 cannot be
arbitrarily small due to roundoff errors arising from diagonalizing the 𝛼-circulant
matrix. Specifically, for any diagonalizable square matrix 𝑃, floating point op-
erations limit the precision of its factorization 𝑃 ≈ 𝑉𝐷𝑉−1. For the 𝛼-circulant
matrix 𝐶𝛼 (see (3.58c)), even though its eigenvalues and eigenvectors have closed-
form expressions, the difference between 𝐶𝛼 and 𝑉𝛼𝐷𝛼𝑉

−1
𝛼 grows linearly as 𝛼
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Figure 3.17. Eigenvalues of the iteration matrix M (see (3.67)) for the wave
equation (2.7): (a,b,c) 𝛾 = 1

120 , (d,e,f) 𝛾 = 1
120.01 . In each panel, the dashed line

represents the circle with radius 𝛼/(1 − 𝛼).

decreases, the roundoff error errro behaving like

errro = 𝑂(𝜖Cond2(𝑉𝛼)) = 𝑂

(
𝜖

𝛼

)
,

where 𝜖 is the machine precision (e.g. 𝜖 = 2.2204 × 10−16 for double precision),
and the equality follows from Gander and Wu (2019) and the fact that 𝑉𝛼 = Λ𝛼F∗

(see (3.59b)) with Cond2(F∗) = 1, implying Cond2(𝑉𝛼) = 1/𝛼. Interestingly, this
does not necessarily imply a similar growth in the roundoff error of the ParaDiag II
method. The error behaviour depends on the implementation: directly solving for
𝑼𝑘 as in (3.58a)–(3.58b) may lead to the growth discussed above, while first solving
the error equation for Δ𝑼𝑘−1 and then updating 𝑼𝑘 (see (3.61)) can significantly
mitigate the roundoff error; see Figure 3.18 for an illustration. A comprehensive
study of the roundoff error for ParaDiag II will appear in Wu, Yang and Zhou
(2025).

So far we have only considered one-step and symmetric two-step time-integrators.
For general multistep methods, the eigenvalues of the preconditioned matrix
P−1

𝛼 K do not necessarily satisfy (3.66), yet we can demonstrate analogous res-
ults. For example, the case where K = 𝐵 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ 𝐴, with 𝐵 being a dense
lower triangular Toeplitz matrix, was studied in Gu and Wu (2020). This matrix
arises in solving Volterra partial integro-differential equations, and its first column
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Figure 3.18. Measured error of ParaDiag II for the wave equation (2.7) implemented
in two modes for three values of 𝛼.

𝝎 = (𝜔0, 𝜔1, . . . , 𝜔𝑁𝑡
) is determined by the quadrature used to handle the integral

term. Gu and Wu (2020) established a bound for the eigenvalues of the form
|𝜆(P−1

𝛼 K)| = 1+𝑂(𝛼), provided that the quantities {𝜔𝑛} satisfy certain conditions,
such as positivity and monotonicity.

Turning to nonlinear problems, the application of ParaDiag II closely resembles
that of ParaDiag I. We illustrate this for the first-order problem 𝒖′(𝑡) = 𝑓 (𝑡, 𝒖(𝑡))
discretized using backward Euler with step size Δ𝑡. Initially we apply Newton’s
iteration to the nonlinear all-at-once system,

JΔ𝑼𝑙 = 𝒃 − 𝐹(𝑼𝑙), 𝑼𝑙+1 = 𝑼𝑙 + Δ𝑼𝑙, (3.68)

where the Jacobian matrix J ≔ 𝐵 ⊗ 𝐼𝑥 − ∇𝐹𝑙 (see (3.43a)–(3.43b)), with

∇𝐹𝑙 = blkdiag
(
∇ 𝑓
(
𝒖𝑙

1, 𝑡1
)
, . . . ,∇ 𝑓

(
𝒖𝑙
𝑁𝑡
, 𝑡𝑁𝑡

))
,

𝐵 =
1
Δ𝑡


1
−1 1

. . .
. . .

−1 1


.

Then we solve (3.68) with GMRES using P𝛼 = 𝐶𝛼 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ 𝐴𝑙 as precondi-
tioner, where 𝐶𝛼 is the 𝛼-circulant matrix of 𝐵, and 𝐴𝑙 is the average matrix of
{∇ 𝑓 (𝒖𝑙

𝑛, 𝑡𝑛)}. In general we cannot use the stationary iteration (3.61) to solve the
Jacobian system (3.68) since 𝜌(P−1

𝛼 J ) > 1. However, the eigenvalues of P−1
𝛼 J

are clustered, which is good for GMRES. The eigenvalue distribution of P−1
𝛼 J is

influenced by the length of the time interval 𝑇 , with a shorter 𝑇 leading to more
clustered eigenvalues and thus faster GMRES convergence. Numerical evidence
supporting this aspect can be found in Gander and Wu (2019) and Wu et al. (2022).
Additionally, we can leverage the nearest Kronecker product approximation intro-
duced in Section 3.5.1 to accelerate convergence; see Liu and Wu (2022).
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4. PinT methods designed for parabolic problems
In Section 2 we showed intuitively why realizing PinT computations for hyperbolic
problems is more challenging than for parabolic problems: parabolic problems
tend to have local solutions in time, except for very low-frequency components,
whereas hyperbolic problems have highly non-local solutions in time, and this is
over all frequency components, from the lowest to the highest ones. Nevertheless,
in Section 3 we showed PinT methods that are effective for hyperbolic problems
and thus tackle all frequency components in a non-local way in time. Naturally,
these methods often perform even better when applied to parabolic problems, since
they tackle all frequency components over a long time, which includes the few very
low-frequency components that are highly non-local in time in parabolic problems.
The methods we have seen so far, however, were often designed for linear problems,
where they are most effective, whereas for nonlinear problems they all suffer from
certain drawbacks. For example, for OSWR it is not easy to determine the optimized
Robin parameters, and without a reasonable parameter, the convergence rate can
be quite poor. For ParaExp and ParaDiag I and II, nonlinearity also affects the
convergence rate of the Newton iteration used as an outer solver, and in particular,
the Newton iteration may converge slowly or even diverge when the time interval is
large. In this section we now show PinT methods that were designed for parabolic
problems and take advantage of their properties to be local in time, as we saw in
Section 2, and they work equally well for linear and nonlinear problems. They
have entirely different convergence mechanisms and properties from the methods
in Section 3, and a direct application of these methods to hyperbolic problems often
leads to slow convergence or even divergence.

4.1. Historical development

The first method we want to introduce is the Parareal algorithm from Lions et al.
(2001), which we have already mentioned in Section 3.4 to describe the nonlinear
ParaExp variant. Even though Parareal was invented independently, it has its roots
in earlier work on multiple shooting techniques for evolution problems (see Bellen
and Zennaro 1989, Chartier and Philippe 1993), and the algorithm had already been
presented in Saha et al. (1997) with a coarse model instead of a coarse grid in the
context of solar system simulations, mentioning a relation to waveform relaxation.
A very early precursor is the paper by Nievergelt (1964), although the method
there is not iterative. Parareal, proposed 20 years ago, has attracted considerable
attention in scientific and engineering computations. The convergence of Parareal
is very well understood; see e.g. Gander and Vandewalle (2007), Gander and Hairer
(2008, 2014) and Gander and Lunet (2024). In a sense, Parareal can be regarded as
a template for developing more efficient PinT methods. There are numerous modi-
fications of Parareal in the literature to make it applicable to different problems or
for different purposes. Interesting examples are the parallel implicit time integra-
tion algorithm (PITA) (see Farhat and Chandesris 2003, Farhat, Cortial, Dastillung
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and Bavestrello 2006, Cortial and Farhat 2009), the parallel full approximation
scheme in space–time (PFASST) (see Minion 2011, Emmett and Minion 2012,
Minion et al. 2015), multigrid reduction in time (MGRiT) (see Falgout et al. 2014,
Dobrev, Kolev, Petersson and Schroder 2017, Hessenthaler et al. 2020), and also
combinations of Parareal with ParaDiag (Wu 2018, Gander and Wu 2020). We
present the convergence mechanisms and convergence properties of Parareal and
its variants in this section. The basic feature of PinT methods based on Parareal
is that they use two grids (or more) for the time discretization, while for space
discretization they use just one grid. The idea of using multigrid in both space and
time goes back to the parabolic multigrid method in Hackbusch (1984), with an
elegant analysis in the form of multigrid waveform relaxation in Lubich and Oster-
mann (1987). Coarsening in time was not effectively possible in this approach, and
important improvements using multigrid techniques for highly advective problems
were proposed in Vandewalle and Van de Velde (1994), Horton and Vandewalle
(1995), Janssen and Vandewalle (1996) and Van Lent and Vandewalle (2002). A
new space–time multigrid (STMG) method using only standard components but,
as a new main ingredient, a block Jacobi smoother in time was introduced and
analysed in Gander and Neumüller (2016), and this is currently one of the most
powerful PinT algorithms for parabolic problems, with excellent strong and weak
scalability properties; see also Neumüller and Smears (2019). We will introduce
STMG at the end of this section, and show its effectiveness for nonlinear parabolic
problems as well.

4.2. Parareal

The Parareal algorithm proposed in Lions et al. (2001) is a non-intrusive time-
parallel solver that is based on multiple shooting, although it was not invented
in this context but in the context of virtual control. In Parareal, the Jacobian in
Newton’s method used to solve the shooting equations is approximated by a finite
difference across two iterates on a coarser grid or model (Gander and Vandewalle
2007). Similarly to ParaExp, it is based on a time decomposition of the interval
(0, 𝑇) into several smaller time intervals 0 = 𝑇0 < 𝑇1 < · · · < 𝑇𝑁 = 𝑇 , with for
example 𝑇𝑛 = 𝑇0 + 𝑛Δ𝑡. However, in contrast to ParaExp, it uses an iteration,
starting with an initial guess 𝑼0

𝑛 at 𝑇𝑛. For iteration index 𝑘 = 0, 1, . . . , Parareal
computes improved approximations using the update formula

𝒖𝑘+1
𝑛+1 = F

(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛

)
+ G
(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘+1
𝑛

)
− G
(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛

)
. (4.1)

Here, F(𝑇𝑛, 𝑇𝑛+1, 𝒖
𝑘
𝑛) represents an accurate solver that uses a smaller step size

Δ𝑡 for the underlying evolution problem, with initial condition 𝒖𝑘
𝑛 at time 𝑡 = 𝑇𝑛,

yielding an approximate solution at time 𝑡 = 𝑇𝑛+1. Similarly, G is a less expensive
and less accurate solver that uses a larger step size, for example Δ𝑇 , or a simpler
model, and the difference of the two G terms in (4.1) represents precisely the
approximation of the Jacobian; see Gander and Vandewalle (2007). Note that in
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Figure 4.1. Parareal uses two time grids, where each large time-step size Δ𝑇

contains 𝐽 small time-step sizes Δ𝑡.

(4.1) all the computationally expensive F solves can be performed in parallel, since
at iteration 𝑘 the approximations 𝒖𝑘

𝑛 are all known. For simplicity we will consider
uniform fine and coarse time grids, assuming that each large step size contains
𝐽 small steps, i.e. Δ𝑇/Δ𝑡 = 𝐽 ≥ 2; see Figure 4.1. However, in principle, it is
straightforward to apply non-uniform time grids in Parareal; see Gander (2017),
Maday and Mula (2020) and Wu and Zhou (2024).

The convergence of Parareal is well understood, both for linear problems (Gander
and Vandewalle 2007) and nonlinear problems (Gander and Hairer 2008): it con-
verges superlinearly on bounded time intervals and linearly for parabolic problems
on arbitrarily long time intervals. Specifically, for the linear problem (2.1), i.e.
𝒖′(𝑡) = 𝐴𝒖(𝑡) + 𝒈(𝑡) with initial value 𝒖(0) = 𝒖0, and assuming that the fine and
coarse solvers G and F are one-step time-integrators with stability functions R𝑔(𝑧)
and R 𝑓 (𝑧), we have the following convergence results.

Theorem 4.1. Let {𝒖𝑛}𝑁𝑡

𝑛=1 be the solutions computed sequentially by the F
solver, 𝒖𝑛+1 = F(𝑇𝑛, 𝑇𝑛+1, 𝒖𝑛). Suppose the matrix 𝐴 of the linear system of
ODEs (2.1) is diagonalizable, 𝐴 = 𝑉𝐴𝐷𝑉

−1
𝐴

, and the coarse solver G is stable, i.e.
|R𝑔(𝑧)| ≤ 1 for 𝑧 ∈ 𝜎(Δ𝑇𝐴). Then Parareal satisfies the convergence estimate

max
1≤𝑛≤𝑁𝑡

∥𝑉𝐴(𝒖𝑘
𝑛 − 𝒖𝑛)∥∞ ≤ max

𝑧∈𝜎(Δ𝑇𝐴)
∥𝑀𝑘(𝑧)∥∞ max

1≤𝑛≤𝑁𝑡

∥𝑉𝐴(𝒖0
𝑛 − 𝒖𝑛)∥∞, (4.2)

where 𝑀(𝑧) is a Toeplitz matrix given by two matrices 𝑀𝑔(𝑧) and 𝑀 𝑓 (𝑧),

𝑀(𝑧) ≔ 𝑀−1
𝑔 (𝑧)[𝑀𝑔(𝑧) − 𝑀 𝑓 (𝑧)],

𝑀𝑔(𝑧) ≔


1

−R𝑔(𝑧) 1
. . .

. . .

−R𝑔(𝑧) 1


,

𝑀 𝑓 (𝑧) ≔


1

−R𝐽
𝑓
(𝑧/𝐽) 1

. . .
. . .

−R𝐽
𝑓
(𝑧/𝐽) 1


.

(4.3)
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Proof. Applying the Parareal iteration (4.1) to the system of ODEs yields

𝒖𝑘+1
𝑛+1 = R𝐽

𝑓 (Δ𝑇𝐴/𝐽)𝒖𝑘
𝑛 + R𝑔(Δ𝑇𝐴)𝒖𝑘+1

𝑛 − R𝑔(Δ𝑇𝐴)𝒖𝑘
𝑛, 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1.

Since the overall fine solution computed sequentially by the F solver satisfies
𝒖𝑛+1 = F(𝑇𝑛, 𝑇𝑛+1, 𝒖𝑛), it also satisfies by adding and subtracting the same term

𝒖𝑛+1 = R𝐽
𝑓 (Δ𝑇𝐴/𝐽)𝒖𝑛 + R𝑔(Δ𝑇𝐴)𝒖𝑛 − R𝑔(Δ𝑇𝐴)𝒖𝑛.

The error 𝒆𝑘𝑛 ≔ 𝒖𝑛 − 𝒖𝑘
𝑛 thus satisfies for 𝑘 ≥ 0 the error equation

𝒆𝑘+1
𝑛+1 = R𝑔(Δ𝑇𝐴)𝒆𝑘+1

𝑛 +
[
R𝐽

𝑓 (Δ𝑇𝐴/𝐽) − R𝑔(Δ𝑇𝐴)
]
𝒆𝑘𝑛, 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1.

For 𝑛 = 0, 𝒆𝑘0 = 0, since the initial value is known. Since 𝐴 = 𝑉𝐴𝐷𝑉
−1
𝐴

, we have

R𝑔(Δ𝑇𝐴) = 𝑉𝐴R𝑔(Δ𝑇𝐷)𝑉−1
𝐴 , R𝐽

𝑓 (Δ𝑇𝐴/𝐽) = 𝑉𝐴R𝐽
𝑓 (Δ𝑇𝐷/𝐽)𝑉−1

𝐴 .

Hence we obtain the error equations in scalar form,

𝜉𝑘+1
𝑛+1(𝑧) = R𝑔(𝑧)𝜉𝑘+1

𝑛 (𝑧) +
[
R𝐽

𝑓 (𝑧/𝐽) − R𝑔(𝑧)
]
𝜉𝑘𝑛(𝑧), 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1,

where 𝑧 = Δ𝑇𝜆, with 𝜆 being an arbitrary eigenvalue of 𝐴, and 𝜉𝑘𝑛(𝑧) is the element
of 𝑉𝐴𝒆

𝑘
𝑛 corresponding to 𝜆. Clearly we have

∥𝑉𝐴𝒆
𝑘
𝑛∥∞ = max𝑧∈𝜎(Δ𝑇𝐴) |𝜉𝑘𝑛(𝑧)|. (4.4)

Since 𝜉𝑘0 (𝑧) = 0 for 𝑘 ≥ 0, we have 𝑀𝑔(𝑧)𝝃𝑘+1(𝑧) = [𝑀𝑔(𝑧) − 𝑀 𝑓 (𝑧)]𝝃𝑘(𝑧), which
gives

𝝃𝑘+1(𝑧) = 𝑀−1
𝑔 (𝑧)[𝑀𝑔(𝑧) − 𝑀 𝑓 (𝑧)]𝝃𝑘(𝑧),

where 𝝃𝑘(𝑧) =
(
𝜉𝑘1 (𝑧), 𝜉𝑘2 (𝑧), . . . , 𝜉𝑘

𝑁𝑡
(𝑧)
)⊤ for 𝑘 ≥ 0. From (4.4) we have

max
1≤𝑛≤𝑁𝑡

∥𝑉𝐴𝒆
𝑘
𝑛∥∞ = max

𝑧∈𝜎(Δ𝑇𝐴)
max

1≤𝑛≤𝑁𝑡

|𝜉𝑘𝑛(𝑧)| = max
𝑧∈𝜎(Δ𝑇𝐴)

∥𝝃𝑘(𝑧)∥∞,

which completes the proof of (4.2).

From (4.2), we see that the norm ∥𝑀𝑘(𝑧)∥∞ represents the convergence factor
of the Parareal algorithm when applied to the Dahlquist test equation 𝑢′(𝑡) =

𝜆𝑢(𝑡) + 𝑔(𝑡), where 𝜆 is an arbitrary eigenvalue of 𝐴.

Remark 4.1. From (4.3) we can interpret the Parareal algorithm from the per-
spective of a preconditioner by observing that

𝑀(𝑧) = 𝐼𝑡 − 𝑀−1
𝑔 (𝑧)𝑀 𝑓 (𝑧).

For the Dahlquist test equation 𝑢′(𝑡) = 𝜆𝑢(𝑡) + 𝑔(𝑡), the matrix 𝑀 𝑓 (𝑧) corresponds
to the all-at-once matrix of the fine solver F ,

𝑀 𝑓 (𝑧)𝑈 = 𝑏,
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where 𝑈 = (𝑢1, 𝑢2, . . . , 𝑢𝑁𝑡
)⊤ and 𝑏 is an appropriate vector. Parareal can thus be

written as

𝑀𝑔(𝑧)Δ𝑈𝑘 = 𝑟𝑘 ≔ 𝑏 − 𝑀 𝑓 (𝑧)𝑈𝑘 , 𝑈𝑘+1 = 𝑈𝑘 + Δ𝑈𝑘 ,

and the parallelization stems from computing the residual 𝑟𝑘 : given 𝑈𝑘 from the
previous iteration, all components of 𝑟𝑘 can be computed simultaneously as

𝑟𝑘𝑛 = 𝑏𝑛 −
(
𝑢𝑘𝑛 − F

(
𝑇𝑛−1, 𝑇𝑛, 𝑢

𝑘
𝑛−1
))

= 𝑏𝑛 −
(
𝑢𝑘𝑛 − R𝐽

𝑓 (𝑧/𝐽)𝑢𝑘𝑛−1
)
.

This understanding is valuable for designing new variants of Parareal, and we will
revisit this in Section 4.5.

Using ∥𝑀𝑘(𝑧)∥∞ to predict the convergence behaviour of Parareal is not con-
venient, so we introduce the results given in Gander and Vandewalle (2007), which
provide a very useful estimate of the convergence rate. This involves examining
the structure of the matrix 𝑀(𝑧). Since

𝑀−1
𝑔 (𝑧) =


1

R𝑔(𝑧) 1
...

. . .
. . .

R𝑁𝑡−1
𝑔 (𝑧) . . . R𝑔(𝑧) 1


,

we have
𝑀(𝑧) =

[
R𝐽

𝑓 (𝑧/𝐽) − R𝑔(𝑧)
]
�̃�(R𝑔(𝑧)),

�̃�(𝛽) ≔



0
1 0
𝛽 1 0
...

. . .
. . .

. . .

𝛽𝑁𝑡−2 . . . 𝛽 1 0


.

This implies that

∥𝑀𝑘(𝑧)∥∞ = |R𝐽
𝑓 (𝑧/𝐽) − R𝑔(𝑧)|𝑘 ∥�̃�𝑘(R𝑔(𝑧))∥∞.

The infinity norm of the matrix �̃�𝑘 was studied in Gander and Vandewalle (2007,
Lemma 4.4), and the main result is

∥�̃�𝑘(R𝑔(𝑧))∥∞ ≤


min

{(1 − |R𝑔(𝑧)|𝑁𝑡−1

1 − |R𝑔(𝑧)|

)𝑘

,

(
𝑁𝑡 − 1

𝑘

)}
if |R𝑔(𝑧)| < 1,(

𝑁𝑡 − 1
𝑘

)
if |R𝑔(𝑧)| = 1.

Substituting this into (4.2) leads to two different estimates of the convergence rate
of the Parareal algorithm.
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Figure 4.2. Parareal convergence for the heat equation showing its typical two
convergence regimes: superlinear convergence over short time intervals and linear
convergence over long time intervals.

Theorem 4.2. With the same notation and assumptions used in Theorem 4.1, the
error of the 𝑘th Parareal iteration satisfies

max
1≤𝑛≤𝑁𝑡

∥𝒆𝑘𝑛∥∞ ≤ max
𝑧∈𝜎(Δ𝑇𝐴)

𝜚𝑠(𝐽, 𝑧, 𝑁𝑡 , 𝑘) max
1≤𝑛≤𝑁𝑡

∥𝒆0
𝑛∥∞,

𝜚𝑠(𝐽, 𝑧, 𝑁𝑡 , 𝑘) ≔
|R𝑔(𝑧) − R𝐽

𝑓
(𝑧/𝐽)|𝑘

𝑘!

𝑘∏
𝑗=1

(𝑁𝑡 − 𝑗),
(4.5a)

where 𝒆𝑘𝑛 = 𝑉𝐴(𝒖𝑘
𝑛 − 𝒖𝑛). If |R𝑔(𝑧)| < 1, for all 𝑧 ∈ 𝜎(Δ𝑇𝐴), we obtain

max
1≤𝑛≤𝑁𝑡

∥𝒆𝑘𝑛∥∞ ≤ max
𝑧∈𝜎(Δ𝑇𝐴)

𝜚𝑘𝑙 (𝐽, 𝑧) max
1≤𝑛≤𝑁𝑡

∥𝒆0
𝑛∥∞,

𝜚𝑙(𝐽, 𝑧) ≔
|R𝑔(𝑧) − R𝐽

𝑓
(𝑧/𝐽)|

1 − |R𝑔(𝑧)| .

(4.5b)

The estimate presented in (4.5a) indicates that Parareal converges superlinearly
and completes iterations in at most 𝑁𝑡 steps, since 𝜌𝑠 = 0 when 𝑘 = 𝑁𝑡 . This
estimate is particularly suitable for short time intervals where 𝑁𝑡 is small. For
larger 𝑁𝑡 , 𝜌𝑠 may not provide accurate predictions: initially 𝜌𝑠 increases, but the
error actually decreases uniformly. This is illustrated in Figure 4.2 for the heat
equation (2.3) with periodic boundary conditions, 𝑔(𝑥, 𝑡) = 0, and initial value
𝑢(𝑥, 0) = sin2(2𝜋𝑥) for 𝑥 ∈ (0, 1). We use in space a very large mesh size Δ𝑥 = 1

5 ,
and both F and G use backward Euler, with a coarsening factor 𝐽 = 10. For
𝑇 = 0.02 and 𝑁𝑡 = 6, the error decreases at a superlinear rate, and 𝜚𝑠 accurately
predicts this decrease. However, for a larger 𝑇 and 𝑁𝑡 , the error decreases linearly,
and the prediction by 𝜚𝑠 is inaccurate. Note that for finer meshes in space (e.g.
Δ𝑥 = 1

8 ), Parareal converges linearly.
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A convergence analysis of Parareal for nonlinear systems of ordinary differential
equations using generating functions can be found in Gander and Hairer (2008,
Theorem 1); see also Gander and Lunet (2024, Theorem 2.6).

Theorem 4.3. Let F be the exact propagator and let G be a time-integrator of
order 𝑝 with its local truncation error bounded by𝐶3Δ𝑇

𝑝+1. Assume thatG satisfies
the Lipschitz condition

∥G(𝑇𝑛, 𝑇𝑛 + Δ𝑇, 𝒗) − G(𝑇𝑛, 𝑇𝑛 + Δ𝑇, 𝒘)∥ ≤ (1 + 𝐶2Δ𝑇)∥𝒗 − 𝒘∥,
and the difference between G and F can be expressed, for small Δ𝑇 , as

F(𝑇𝑛, 𝑇𝑛+1, 𝒗) − G(𝑇𝑛, 𝑇𝑛+1, 𝒗) = 𝑐𝑝+1(𝒗)Δ𝑇 𝑝+1 + 𝑐𝑝+2(𝒗)Δ𝑇 𝑝+2 + · · · ,
where the coefficients 𝑐𝑝+1, 𝑐𝑝+2, . . . are continuously differentiable functions of
𝒗. Then the error of Parareal at iteration 𝑘 is bounded by

∥𝒖(𝑇𝑛) − 𝒖𝑘
𝑛∥ ≤ 𝐶3Δ𝑇

𝑝+1(𝐶1Δ𝑇
𝑝+1)𝑘+1

(𝑘 + 1)!
(1 + 𝐶2Δ𝑇)𝑛−𝑘−1

𝑘∏
𝑗=0

(𝑛 − 𝑗), (4.6)

where 𝑛 = 1, 2, . . . , 𝑁𝑡 and 𝐶1 is a constant related to the difference between F
and G.

The error estimate (4.6) has a similar consequence to the linear error estimate for
short time intervals and small 𝑁𝑡 (see (4.5a)): the product term includes a factor
of zero, resulting in an error bound of zero, indicating convergence in at most 𝑁𝑡

steps. A detailed convergence analysis for Parareal applied to Hamiltonian systems
using backward error analysis can be found in Gander and Hairer (2014).

Parareal is highly effective for diffusive problems, such as the heat equation
shown in Figure 4.2. In particular, for linear systems of ODEs of the form 𝒖′(𝑡) =
𝐴𝒖(𝑡) + 𝒈(𝑡), where 𝐴 is a negative semi-definite matrix, it can be shown that
Parareal has a constant convergence factor around 0.3 for arbitrarily large 𝑇 and 𝑁𝑡 ,
provided we use backward Euler5 for G and F is an L-stable Runge–Kutta method.

Theorem 4.4. If G is backward Euler and F is an L-stable Runge–Kutta method,
then

max
𝑧∈R−

𝜚𝑙(𝐽, 𝑧) ≈ 0.3 for all 𝐽 ≥ 𝐽min, (4.7)

where 𝐽min = 𝑂(1).

Proof. For the case where F is backward Euler, this result was established in
Mathew, Sarkis and Schaerer (2010). When F is the trapezoidal rule or BDF2 (i.e.
MATLAB’s ode23s solver) or two singly diagonal implicit Runge–Kutta (SDIRK)
methods, proofs can be found in Wu (2015) and Wu and Zhou (2015). For a general
L-stable F , the proof can be found in Yang, Yuan and Zhou (2023).

5 Note that using backward Euler for G in Parareal is justified due to the need for a cheap and stable
coarse grid correction.
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Figure 4.3. Different choices of the fine solver F lead to different convergence
rates for Parareal.

The origins of this result go back to a result already shown in Gander and
Vandewalle (2007, Table 5.1) at the continuous level, and for other coarse propag-
ators too, and contraction can be even better, e.g. ≈ 0.068 for Radau IIA.

If F is only A-stable (not L-stable), e.g. the trapezoidal rule, Parareal does not
always have a constant convergence factor. However, for large coarsening factors
𝐽, a similar result holds, namely

max
𝑧∈[0,𝑧max ]

𝜚𝑙(𝐽, 𝑧) ≈ 0.3 for all 𝐽 ≥ 𝐽min = 𝑂(log2(𝑧max)), (4.8)

which was proved for the trapezoidal rule and a fourth-order Gauss Runge–Kutta
method in Wu and Zhou (2015). This differs significantly from the scenario where
F is assumed to be the exact solution propagator (i.e. F = exp(Δ𝑇𝐴)), where
Parareal converges with a rate around 0.3 for 𝐽 ≥ 2.

We now illustrate this constant convergence factor by applying Parareal to the
heat equation with periodic boundary conditions and discretization and problem
parameters Δ𝑥 = 1

256 , Δ𝑇 = 0.1, 𝑇 = 4 and 𝜈 = 0.1 (the diffusion coefficient).
For F we use the trapezoidal rule and two SDIRK methods given by the Butcher
tableau

𝛾 𝛾 0
1 − 𝛾 1 − 𝛾 𝛾

1 − 𝛾 1 − 𝛾︸                        ︷︷                        ︸
SDIRK22, 𝛾=(2−

√
2)/2

,

𝛾 𝛾 0
1 − 𝛾 −1√

3
𝛾

1
2

1
2︸              ︷︷              ︸

SDIRK23, 𝛾=(3+
√

3)/6

. (4.9)

Here, ‘SDIRK𝑠𝑝’ denotes an 𝑠-stage SDIRK method of order 𝑝. For SDIRK22,
(4.7) holds for 𝐽min = 2 (Wu 2015), and for SDIRK23, 𝐽min = 4 (Wu and Zhou
2015). In Figure 4.3 we show the measured error at each iteration for three values
of the coarsening factor 𝐽. We observe that for small 𝐽, these three time-integrators
indeed lead to different convergence rates, especially for the trapezoidal rule and
the SDIRK23 method, where Parareal converges more slowly. When 𝐽 is large, say
𝐽 = 50, Parareal converges at a similar rate close to 0.3 for all three time-integrators.
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Figure 4.4. The quantity 𝜚𝑙(𝐽, 𝑧) for each 𝑧 = Δ𝑇𝜆(𝐴) for the advection–diffusion
equation with three values of the diffusion parameter 𝜈. As 𝜈 decreases, the
maximum of 𝜚𝑙 approaches 1.
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Figure 4.5. Convergence of Parareal applied to (a) the advection–diffusion equation
and (b) Burgers’ equation with three values of the diffusion parameter 𝜈.

This can be intuitively understood by the fact that for small 𝐽 the fine integrator that
is not 𝐿-stable does not resolve the physics accurately enough for high frequencies,
and Parareal tries to converge to this incorrect solution with backward Euler as the
coarse propagator that represents the correct physics for high frequencies.

While Parareal converges very well for the heat equation and more generally
diffusive problems, Parareal is not well-suited to problems that are only weakly
diffusive, since its convergence rate continuously deteriorates as the diffusion
weakens. We illustrate this for the advection–diffusion equation (2.5) and Bur-
gers’ equation (2.6) with periodic boundary conditions, 𝑔(𝑥, 𝑡) = 0, and initial
condition 𝑢(𝑥, 0) = sin(2𝜋𝑥). We use 𝑇 = 4, Δ𝑇 = 0.1, Δ𝑥 = 1

128 and 𝐽 = 32 for
the problem and discretization parameters. The coarse solver is backward Euler,
and the fine solver is SDIRK22. For three values of the diffusion parameter 𝜈, we
show in Figure 4.4 the quantity 𝜚𝑙(𝐽, 𝑧) for each 𝑧 = Δ𝑇𝜆(𝐴). As 𝜈 decreases,
the maximum of 𝜚𝑙 grows, indicating that Parareal converges more slowly. This is
confirmed in Figure 4.5(a), where we run Parareal on the corresponding problem.
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For Burgers’ equation we do not have a theoretical analysis as precise as that for the
advection–diffusion equation in Figure 4.4, but the results in Figure 4.5(b) show
that Parareal also converges ever more slowly for small 𝜈. If we continue to reduce
the parameter 𝜈, meaning that the advection term becomes increasingly dominant,
Parareal eventually diverges, approximately when 𝜈 ≤ 10−3, except that the finite
step convergence still holds if we iterate for long enough.

For hyperbolic problems, such as the second-order wave equation (2.7), Parareal
is also not convergent, as was already shown in Gander and Vandewalle (2007); see
also Gander and Lunet (2020a,b), Gander, Lunet and Pogoželskytė (2023a) and
Gander, Lunet, Ruprecht and Speck (2023b) for more recent and detailed analyses.
This degeneration can be attributed to the fact that for hyperbolic problems, as
illustrated in Figure 2.4, arbitrarily small high-frequency components, i.e. small
oscillations, propagate arbitrarily far in both space and time. Consequently, it
becomes very challenging to achieve high-accuracy solutions in the coarse solver
G that are comparable to the fine solver F , in both space and time. If we strive
for high accuracy in G, the coarse grid correction becomes rather time-consuming,
and we fail to achieve any speed-up.

In the MGRiT community (MGRiT is a multilevel generalization of Parareal;
see Section 4.4), considerable research effort has been directed towards making
MGRiT work for advection equations; see Howse et al. (2019), De Sterck et al.
(2021), De Sterck, Falgout, Krzysik and Schroder (2023b) and De Sterck, Falgout
and Krzysik (2023a) and references therein. The idea is to design an optimized
coarse solver through the so-called semi-Lagrangian discretization. This technique
performs well for linear advection equations, while research on the nonlinear case
is still ongoing, as the semi-Lagrangian discretization is a characteristics-based
method that is not easily realized for nonlinear problems. Another idea, proposed
in Gander and Wu (2020), also aims to make Parareal (and MGRiT) work for
hyperbolic problems. In this approach it is relatively easy to handle nonlinear
problems, as we will see in Section 4.5.

4.3. PFASST

In this and the next two subsections, we present three variants of the Parareal
algorithm. We begin by introducing the parallel full approximation scheme in
space–time (PFASST), which was proposed in Emmett and Minion (2012). The
concept of this method emerged two years earlier when Minion (2010) replaced
the fine solver with one iteration of SDC (Dutt et al. 2000), in order to reduce
the computational cost of one Parareal iteration. PFASST has been successfully
applied to several problems (Emmett and Minion 2012, Speck et al. 2012, 2014),
but a clear description and theoretical analysis of this method are rather challenging.
Recently, Bolten, Moser and Speck (2017) described PFASST as a time multigrid
method based on an algebraic representation of SDC introduced in Minion et al.
(2015), and provided a convergence analysis in Bolten, Moser and Speck (2018).
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In the formalism of block iterations, PFASST was precisely described and studied
for a model problem in Gander et al. (2023b). In particular, for the system of
ODEs (2.1), a two-level variant of PFASST can be described as follows: we first
partition the time interval (0, 𝑇) into 𝑁𝑡 large subintervals [𝑇0, 𝑇1] ∪ [𝑇1, 𝑇2] ∪ · · ·∪
[𝑇𝑁𝑡−1, 𝑇𝑁𝑡

] with 𝑇0 = 0, 𝑇𝑁𝑡
= 𝑇 and 𝑇𝑛 = 𝑛Δ𝑡. For each subinterval, e.g. the 𝑛th

subinterval [𝑇𝑛, 𝑇𝑛+1], we define 𝑀 𝑓 and 𝑀𝑐 time points{{
𝑡
𝑓
𝑛,𝑚 ≔ 𝑇𝑛 + 𝜏

𝑓
𝑚Δ𝑡

}
, 𝑚 = 0, 1, . . . , 𝑀 𝑓 and 𝜏

𝑓

0 = 0, 𝜏 𝑓

𝑀 𝑓
= 1,{

𝑡𝑐𝑛,𝑚 ≔ 𝑇𝑛 + 𝜏𝑐𝑚Δ𝑡
}
, 𝑚 = 0, 1, . . . , 𝑀𝑐 and 𝜏𝑐0 = 0, 𝜏𝑐

𝑀𝑐
= 1,

where 𝑀 𝑓 > 𝑀𝑐. Here we use the superscript ‘ 𝑓 ’ and ‘𝑐’ to denote the fine and the
coarse time grids. Then we solve (2.1) for 𝑡 ∈ [𝑇𝑛, 𝑇𝑛+1] by numerical quadrature as

𝒖𝑛,𝑚 = 𝒖𝑛,0 + Δ𝑡
∑︁𝑀

𝑗=1
𝑞𝑚, 𝑗(𝐴𝒖𝑛, 𝑗 + 𝒈(𝑡𝑛, 𝑗)), 𝑚 = 1, 2, . . . , 𝑀, (4.10)

where 𝒖𝑛, 𝑗 is an approximation of 𝒖 at 𝑡 = 𝑡𝑛, 𝑗 . Here 𝑀 = 𝑀 𝑓 or 𝑀𝑐, 𝑡𝑛, 𝑗 = 𝑡
𝑓

𝑛, 𝑗

or 𝑡𝑐
𝑛, 𝑗

. We represent (4.10) as

𝒖𝑛 = Δ𝑡(𝑄 ⊗ 𝐴)𝒖𝑛 + 𝝌𝒖𝑛−1 + Δ𝑡𝒃𝑛,

where

𝑄 ≔ (𝑞𝑚, 𝑗), 𝒖𝑛 ≔
(
𝑢⊤𝑛,1, 𝑢

⊤
𝑛,2, . . . , 𝑢

⊤
𝑛,𝑀

)⊤
, 𝒃𝑛 ≔ (𝑄 ⊗ 𝐼𝑥)𝒈𝑛

and 𝝌 is the block ‘copying’ matrix 𝝌 ≔ 𝜒 ⊗ 𝐼𝑥 with

𝜒 ≔


0 · · · 0 1
0 · · · 0 1
... · · ·

...
...

0 · · · 0 1


∈ R𝑀×𝑀 , 𝒈𝑛 ≔


𝒈(𝑡𝑛,1)
𝒈(𝑡𝑛,2)

...

𝒈(𝑡𝑛,𝑀 )


.

Hence, for the fine and coarse time grids we have

𝒖 𝑓
𝑛 = 𝝓−1

𝑓

(
𝝌 𝑓 𝒖

𝑓

𝑛−1 + Δ𝑡𝒃 𝑓
𝑛

)
, 𝒖𝑐

𝑛 = 𝝓−1
𝑐 (𝝌𝑐𝒖

𝑐
𝑛−1 + Δ𝑡𝒃𝑐𝑛),

𝝓 𝑓 ≔ 𝑰 𝑓 − Δ𝑡𝑄 𝑓 ⊗ 𝐴, 𝝓𝑐 ≔ 𝑰𝑐 − Δ𝑡𝑄𝑐 ⊗ 𝐴,

where 𝑛 = 1, 2, . . . , 𝑁𝑡 , 𝑰𝑐 = 𝐼𝑀𝑐
⊗ 𝐼𝑥 and 𝑰 𝑓 = 𝐼𝑀 𝑓

⊗ 𝐼𝑥 .
For PFASST, we need transfer matrices T𝑐→ 𝑓 and T 𝑓→𝑐, which prolongate and

restrict vectors defined on the coarse and fine time grids. These transfer matrices
are defined via Lagrange interpolation,

𝑝𝑐(𝜏; 𝒖𝑐) =
𝑀𝑐∑︁
𝑚=1

𝑢𝑐𝑚𝐿
𝑐
𝑚(𝜏), 𝐿𝑐

𝑚(𝜏) ≔

∏𝑀𝑐

𝑗=1, 𝑗≠𝑚(𝜏 − 𝜏𝑐𝑚)∏𝑀𝑐

𝑗=1, 𝑗≠𝑚(𝜏𝑐
𝑗
− 𝜏𝑐𝑚)

,

𝑝 𝑓
(
𝜏; 𝒖 𝑓

)
=

𝑀 𝑓∑︁
𝑚=1

𝑢
𝑓
𝑚𝐿

𝑓
𝑚(𝜏), 𝐿

𝑓
𝑚(𝜏) ≔

∏𝑀 𝑓

𝑗=1, 𝑗≠𝑚
(
𝜏 − 𝜏

𝑓
𝑚

)∏𝑀 𝑓

𝑗=1, 𝑗≠𝑚
(
𝜏
𝑓

𝑗
− 𝜏

𝑓
𝑚

) ,
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where 𝐿𝑐
𝑚 and 𝐿

𝑓
𝑚 are the 𝑚th basis function specified by the coarse and fine

interpolation nodes. The function 𝑝𝑐 is evaluated at the fine nodes {𝜏 𝑓
𝑚} and the

function 𝑝 𝑓 is evaluated at the coarse nodes {𝜏𝑐𝑚}. Specifically,
𝑝𝑐
(
𝜏
𝑓

1 ; 𝒖𝑐
)

𝑝𝑐
(
𝜏
𝑓

2 ; 𝒖𝑐
)

...

𝑝𝑐
(
𝜏
𝑓

𝑀 𝑓
; 𝒖𝑐
)

=



𝐿𝑐

1
(
𝜏
𝑓

1
)

𝐿𝑐
2
(
𝜏
𝑓

1
)

· · · 𝐿𝑐
𝑀𝑐

(
𝜏
𝑓

1
)

𝐿𝑐
1
(
𝜏
𝑓

2
)

𝐿𝑐
2
(
𝜏
𝑓

2
)

· · · 𝐿𝑐
𝑀𝑐

(
𝜏
𝑓

2
)

...
... · · ·

...

𝐿𝑐
1
(
𝜏
𝑓

𝑀 𝑓

)
𝐿𝑐

2
(
𝜏
𝑓

𝑀 𝑓

)
· · · 𝐿𝑐

𝑀𝑐

(
𝜏
𝑓

𝑀 𝑓

)

⊗ 𝐼𝑥


︸                                                              ︷︷                                                              ︸

≕T𝑐→ 𝑓 ∈R𝑀𝑓 𝑁𝑥×𝑀𝑐𝑁𝑥

𝒖𝑐 .

The matrix T 𝑓→𝑐 ∈ R𝑀𝑐𝑁𝑥×𝑀 𝑓 𝑁𝑥 is defined similarly.
With the above notation, according to Gander et al. (2023b), PFASST can be

written as

𝒖𝑘+1
𝑛+1 = B0

1𝒖
𝑘
𝑛+1 + B1

0
(
𝝌𝒖𝑘+1

𝑛 + Δ𝑡𝒃 𝑓
𝑛

)
+ B0

0
(
𝝌𝒖𝑘

𝑛 + Δ𝑡𝒃 𝑓
𝑛

)
,

where

B0
1 = [𝑰 𝑓 − T𝑐→ 𝑓 𝝓−1

𝑐 T 𝑓→𝑐𝝓 𝑓 ]
(
𝑰 𝑓 − �̃�

−1
𝑓 𝝓 𝑓

)
,

B1
0 = T𝑐→ 𝑓 𝝓−1

𝑐 T 𝑓→𝑐,

B0
0 = [𝑰 𝑓 − T𝑐→ 𝑓 𝝓−1

𝑐 T 𝑓→𝑐𝝓 𝑓 ]�̃�
−1
𝑓 ,

and �̃� 𝑓 is an approximation of 𝝓 𝑓 . In practice, we construct �̃� 𝑓 by using an implicit
Euler method on the time points {𝑡 𝑓𝑛,𝑚}:

𝒖𝑛,𝑚+1 − 𝒖𝑛,𝑚

Δ𝑡
(
𝜏
𝑓

𝑚+1 − 𝜏
𝑓
𝑚

) = 𝐴𝒖𝑛,𝑚+1 + 𝒈
(
𝑡
𝑓

𝑛,𝑚+1
)
, 𝑚 = 0, 1, . . . , 𝑀 𝑓 − 1, (4.11)

that is,

�̃� 𝑓 =


1
−1 1

. . .
. . .

−1 1


⊗ 𝐼𝑥 − Δ𝑡


𝜏
𝑓

1 − 𝜏
𝑓

0
𝜏
𝑓

2 − 𝜏
𝑓

1
. . .

𝜏
𝑓

𝑀 𝑓
− 𝜏

𝑓

𝑀 𝑓 −1


⊗ 𝐴.

We now apply PFASST to the heat equation (2.3) and the advection–diffusion
equation (2.5) with 𝑇 = 3, periodic boundary conditions and initial value 𝑢(𝑥, 0) =
0. The source term 𝑔(𝑥, 𝑡) for the two PDEs is given by (2.4) with 𝜎 = 1000 and the
space–time mesh size is Δ𝑥 = 1

128 , Δ𝑡 = 1
64 . For the numerical quadrature (4.10),

we use the Radau IIA method for both fine and coarse nodes with 𝑀 𝑓 = 3 and
𝑀𝑐 = 2. The nodes are

{𝜏 𝑓
𝑚} ≔

{
0,

4 −
√

6
10

,
4 +

√
6

10
, 1

}
, {𝜏𝑐𝑚} ≔

{
0,

1
3

1
}
,
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Figure 4.6. Measured error of PFASST for the heat equation and the advection–
diffusion equation (ADE) with three diffusion parameters.

and the corresponding weight matrices 𝑄 𝑓 and 𝑄𝑐 are

𝑄 𝑓 ≔


88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225
16−

√
6

36
16+

√
6

36
1
9

 , 𝑄𝑐 ≔

[
5
12 − 1

12
3
4

1
4

]
.

Then the two transfer matrices are

T𝑐→ 𝑓 =


1.2674 −0.2674
0.5325 0.4674

0 1

 ⊗ 𝐼𝑥 , T 𝑓→𝑐 =

[
0.5018 0.6833 −0.1851

0 0 1

]
⊗ 𝐼𝑥 .

In Figure 4.6 we show the measured error of PFASST for the heat equation and
the advection–diffusion equation with three diffusion parameters. We see that the
convergence rate also deteriorates when the diffusion in the PDE becomes weak,
as in Parareal and MGRiT, seen earlier.

4.4. MGRiT

Multigrid reduction in time (MGRiT) is another variant of Parareal, introduced
by Falgout et al. (2014). MGRiT can be interpreted in different ways, such as
an algebraic multigrid method with the so-called FCF-relaxation, a block iteration
(Gander et al. 2023b and Gander and Lunet 2024, Chapter 4.6), or as an overlapping
Parareal variant (Gander et al. 2018b, Theorem 4 and Corollary 1). Here we present
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Figure 4.7. Geometric representation of MGRiT with FCF-relaxation as an over-
lapping variant of Parareal. The dark circles represent the coarse time points where
the coarse solver G runs.

MGRiT as an overlapping variant of Parareal applied to nonlinear systems of ODEs
(2.2), i.e. 𝒖′ = 𝑓 (𝒖, 𝑡) with initial value 𝒖(0) = 𝒖0. MGRiT with two levels and
FCF-relaxation then corresponds to the iteration

𝒖𝑘+1
0 = 𝒖0, 𝒖

𝑘+1
1 = F(𝑇0, 𝑇1, 𝒖0),

𝒖𝑘+1
𝑛+1 = F

(
𝑇𝑛, 𝑇𝑛+1,F

(
𝑇𝑛−1, 𝑇𝑛, 𝒖

𝑘
𝑛−1
))

+ G
(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘+1
𝑛

)
− G
(
𝑇𝑛, 𝑇𝑛+1,F

(
𝑇𝑛−1, 𝑇𝑛, 𝒖

𝑘
𝑛−1
))
,

(4.12)

where 𝑛 = 1, 2, . . . , 𝑁𝑡 − 1, and G and F are the coarse and fine time propagators
used in Parareal (see (4.1)). We see from (4.12) that MGRiT with FCF-relaxation
costs two fine solves in each iteration, compared to only one fine solve in Parareal.
A geometric representation of MGRiT with FCF-relaxation is shown in Figure 4.7,
illustrating that two-level MGRiT with FCF relaxation is a Parareal algorithm with
overlap size Δ𝑇 , and it thus also converges in a finite number of iterations, that is,
the global error decays to zero after at most 𝑘 = ⌈𝑁𝑡/2⌉ iterations (Gander et al.
2018b, Theorem 5). A superlinear convergence result for two-level MGRiT applied
to nonlinear problems with more general F(CF)𝜈-relaxation, 𝜈 = 1, 2, . . . , can be
found in Gander et al. (2018b, Theorem 6), and it is shown that this corresponds
to Parareal with 𝜈 coarse time interval Δ𝑇 overlap; see Gander et al. (2018b,
Corollary 1).

In the linear case, a linear convergence estimate can be found in Dobrev et al.
(2017), which we now show. We consider the linear system of ODEs (2.1), i.e.
𝒖′ = 𝐴𝒖+ 𝒈 with initial value 𝒖(0) = 𝒖0, where we assume that 𝐴 is diagonalizable
with spectrum 𝜎(𝐴) ⊂ C−.

Theorem 4.5 (Dobrev et al. 2017). With the same notation and assumptions as
in Theorem 4.2, MGRiT with FCF-relaxation satisfies the convergence estimate

max
1≤𝑛≤𝑁𝑡

∥𝒆𝑘𝑛∥∞ ≤ max
𝑧∈𝜎(Δ𝑇𝐴)

𝜚𝑘𝑙 (𝐽, 𝑧) max
1≤𝑛≤𝑁𝑡

∥𝒆0
𝑛∥∞,

𝜚𝑙(𝐽, 𝑧) ≔
|R𝐽

𝑓
(𝑧/𝐽)| |R𝑔(𝑧) − R𝐽

𝑓
(𝑧/𝐽)|

1 − |R𝑔(𝑧)| ,

(4.13)
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(a)

(b)

Figure 4.8. The regions where 𝜚𝑙 ≤ �̂� in the left half of the complex plane for
MGRiT with FCF-relaxation (a) and Parareal (b).

where R𝑔 and R 𝑓 are the stability functions of the coarse solver G and the fine
solver F , 𝒆𝑘𝑛 ≔ 𝑉𝐴(𝒖𝑘

𝑛 − 𝒖𝑛), and the coarse solver G is stable in the sense that
|R𝑔(𝑧)| < 1 for 𝑧 ∈ 𝜎(Δ𝑇𝐴).

The quantity 𝜚𝑙 in (4.13) is the linear convergence factor of MGRiT for long-
time computations when applied to linear problems. Letting 𝜚𝑙,parareal denote the
convergence factor of Parareal (see (4.5b)) and 𝜚𝑙,mgrit the convergence factor of
MGRiT, we obtain

𝜚𝑙,mgrit = |R𝐽
𝑓 (𝑧/𝐽)| × 𝜚𝑙,parareal.

In practice, the fine solver F is stable, i.e. |R 𝑓 (𝑧)| ≤ 1 for all 𝑧 ∈ 𝜎(Δ𝑇𝐴), and thus
each additional 𝐶𝐹 relaxation adds a further contraction to MGRiT compared to
Parareal, but each such relaxation again costs an expensive fine parallel solve. To
illustrate this, in Figure 4.8 we show the regions where 𝜚𝑙,mgrit ≤ �̂� and 𝜚2

𝑙,parareal ≤
�̂� with �̂� = 0.2, 0.4, 0.6 in the left half of the complex plane (i.e. 𝑧 ∈ C−) for
Parareal and MGRiT.6 Here, we chose backward Euler for G and the exact time-
integrator F = exp(Δ𝑇𝐴) for F . The stability functions of these two solvers are
R𝑔(𝑧) = 1/(1 − 𝑧) and R 𝑓 (𝑧) = e𝑧 . We see that for a given upper bound �̂�, the

6 For a fair comparison, we compare two Parareal iterations with one MGRiT iteration with FCF
relaxation, since both then use two fine solves.
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regions where 𝜚𝑙,mgrit ≤ �̂� are comparable to those where 𝜚𝑠
𝑙,parareal ≤ �̂�. For other

fine time solvers, such as the two SDIRK methods in (4.9), the results look similar,
and the above conclusion holds as well.

A more quantitative comparison for the case 𝑧 ∈ R− is as follows.

Theorem 4.6 (Wu and Zhou 2019). Suppose we use an L-stable time-integrator
for F and the ratio between Δ𝑇 and Δ𝑡, i.e. 𝐽 = Δ𝑇/Δ𝑡, satisfies 𝐽 = 𝑂(1). Then,
if we use the backward Euler method for G,

max𝑧≥0𝜚𝑙 ≈
{

0.2984, Parareal,
0.1115, MGRiT with FCF-relaxation.

If we use the LIIIC-2 method (i.e. the second-order Lobatto IIIC Runge–Kutta
method) for G,

max𝑧≥0𝜚𝑙 ≈
{

0.0817, Parareal,
0.0197, MGRiT with FCF-relaxation.

Therefore, when using backward Euler for G, the convergence factor of one
MGRiT iteration with FCF-relaxation is a bit worse than the convergence factor
of two Parareal iterations (0.29842 = 0.0890 < 0.1115 and 0.08172 = 0.0067 <

0.0197), and the cost in fine solves of one MGRiT iteration with FCF-relaxation is
the same as the cost of two Parareal iterations.

We now compare the convergence rates of Parareal and MGRiT by applying
them to the heat equation (2.3) and the advection–diffusion equation (2.5). We
impose homogeneous Dirichlet boundary conditions for the heat equation and
periodic boundary conditions for ADE. For both PDEs the initial condition is
𝑢(𝑥, 0) = sin2(8𝜋(1−𝑥)2) for 𝑥 ∈ (0, 1). The problem and discretization parameters
are 𝑇 = 5, 𝐽 = 20, Δ𝑇 = 1

8 and Δ𝑥 = 1
160 . For G we use backward Euler, and

for F we use SDIRK22 from (4.9). In Figure 4.9, for both the heat equation
and the advection–diffusion equation with two different values of the diffusion
parameter 𝜈, we show the quantity 𝜚𝑙(𝐽, 𝑧) for 𝑧 ∈ 𝜎(Δ𝑇𝐴). The maximum,
denoted by 𝜚𝑙,max ≔ max𝑧∈𝜎(Δ𝑇𝐴) 𝜚𝑙(𝐽, 𝑧), represents the convergence factor for
the two methods. It is evident that for the heat equation and the ADE with 𝜈 = 0.1,
the convergence factor of MGRiT with FCF-relaxation is approximately equal to the
square of that of Parareal, indicating that MGRiT with FCF-relaxation converges
twice as fast as Parareal, but also at twice the cost, since it uses two F solves and
Parareal only one, which is consistent with Theorem 4.6. For ADE with 𝜈 = 0.01,
the convergence factors of both MGRiT and Parareal are close to 1, indicating very
slow convergence for both. This is due to the fact that the coarse propagator is no
longer good enough for small 𝜈 when advection dominates. Note also that this has
a greater impact for Parareal, which uses the coarse propagator after each fine solve
(see (4.1)), whereas MGRiT with FCF-relaxation performs two consecutive fine
solves without a coarse solve in between (see (4.12)). In Figure 4.10 we present
the measured errors for the two methods, where we plot for Parareal each double
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(a)

(b)

Figure 4.9. The distribution of 𝜚𝑙(𝐽, 𝑧) for 𝑧 ∈ 𝜎(Δ𝑇𝐴) for the heat equation and
the advection–diffusion equation (ADE) with two values of the diffusion parameter
𝜈. (a) MGRiT, (b) Parareal. In each panel, 𝜚𝑙,max = max𝑧∈𝜎(Δ𝑇𝐴) 𝜚𝑙(𝑧).

iteration as one, in order to use two fine solves, as in MGRiT with FCF-relaxation.
We see that for the heat equation and ADE with 𝜈 = 0.1, convergence of Parareal
and MGRiT is very similar, as expected, but with advection convergence is worse.
This is confirmed for ADE with 𝜈 = 0.01, where both MGRiT with FCF-relaxation
and Parareal now converge very slowly, and we observe that Parareal deterioration
is more pronounced due to the use of the ineffective coarse solve after each fine
solve, as indicated by the analysis. Finally, for 𝜈 = 0.002, both Parareal and
MGRiT diverge; the corresponding values are 𝜚𝑙,max = 1.4211 for Parareal and
𝜚𝑙,max = 1.2812 for MGRiT. These results clearly show convergence problems of
both methods when approaching the hyperbolic regime.

Like Parareal, MGRiT can also be applied to nonlinear problems, where G and
F require the use of some nonlinear solver. A convergence analysis of MGRiT for
nonlinear cases can be found in Gander et al. (2018b), under the assumption of
certain Lipschitz conditions for G, F , and their difference. The main conclusion is
as follows: one MGRiT iteration with FCF-relaxation (thus using two fine solves)
contracts similarly to two Parareal iterations (also using two fine solves) as long as
the coarse solver G is reasonably accurate. To illustrate this, we apply MGRiT with
FCF-relaxation and Parareal to Burgers’ equation (2.6) with homogeneous Dirichlet
boundary conditions and initial condition 𝑢(𝑥, 0) = sin2(8𝜋(1 − 𝑥)2) for 𝑥 ∈ (0, 1),
𝑇 = 5 and discretization parameters Δ𝑇 = 1

16 , Δ𝑥 = 1
160 and 𝐽 = 10. We use centred
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Figure 4.10. Measured errors for Parareal and MGRiT for the heat equation and the
advection–diffusion equation (ADE) with three values of the diffusion parameter
𝜈. The dash-dotted line in each panel indicates the order of the truncation error
max{Δ𝑡2,Δ𝑥2} of the discretization, beyond which one would not iterate in practice.

finite differences for the space discretization, and for the time discretization we use
backward Euler for G and SDIRK22 (4.9) for F . In Figure 4.11 we show the errors
for three values of the diffusion parameter 𝜈, again plotting a double iteration of
Parareal for one iteration of MGRiT with FCF-relaxation to measure the same
number of fine solves. We see that for each 𝜈, MGRiT converges like two steps of
Parareal again, as for the linear problems in Figure 4.10.

4.5. Diagonalization-based Parareal

The third variant of Parareal we want to explain uses ParaDiag in the coarse grid
correction (CGC). There are two approaches. The first uses a head–tail coupled
condition to permit the CGC to be solved in one shot with ParaDiag; see Wu (2018)
and Wu and Zhou (2019). The second involves designing a special coarse solver
that closely approximates the fine solver, but can be applied at low cost for each
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Figure 4.11. Error of Parareal and MGRiT for Burgers’ equation (2.6) with three
values of the diffusion parameter 𝜈.

large time interval [𝑇𝑛, 𝑇𝑛+1] using ParaDiag (see Gander and Wu 2020). The two
Parareal variants have distinct mechanisms, convergence properties and scopes of
application.

4.5.1. Diagonalization-based CGC
For the initial-value problem 𝒖′ = 𝑓 (𝒖) with 𝒖(0) = 𝒖0, the standard CGC for
Parareal follows a sequential procedure. Specifically, we solve for {𝒖𝑘+1

𝑛 } step by
step as

𝒖𝑘+1
𝑛+1 = G

(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘+1
𝑛

)
+ 𝒃𝑘𝑛+1, 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1, (4.14)

starting from the initial condition 𝒖𝑘+1
0 = 𝒖0, where

𝒃𝑘𝑛+1 = F
(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛

)
− G
(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛

)
is determined from the previous iteration. The idea in Wu (2018) was to impose a
head–tail-type coupling condition 𝒖𝑘+1

0 = 𝛼𝒖𝑘+1
𝑁𝑡

+𝒖0 for the CGC. This is different
from the more natural head–tail condition we saw in ParaDiag II in (3.55), which
appeared a year later in Gander and Wu (2019), but turned out to work equally
well in the present context. To use this head–tail-type coupling condition, we must
redefine 𝒃𝑘𝑛+1 as

𝒃𝑘𝑛+1 = F
(
𝑇𝑛, 𝑇𝑛+1, �̃�

𝑘
𝑛

)
− G
(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛

)
,

where

�̃�𝑘
𝑛 =

{
𝒖𝑘
𝑛, if 𝑛 ≥ 1,

𝒖0, if 𝑛 = 0.

This redefinition is necessary to ensure that the iterates converge to the solution
of the underlying ODEs. In summary, the Parareal variant proposed in Wu (2018)
with this head–tail-type coupling condition is

𝒖𝑘+1
𝑛+1 = G

(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘+1
𝑛

)
+ F

(
𝑇𝑛, 𝑇𝑛+1, �̃�

𝑘
𝑛

)
− G
(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛

)
,

𝒖𝑘+1
0 = 𝛼𝒖𝑘+1

𝑁𝑡
+ 𝒖0,

(4.15)
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where 𝑛 = 0, . . . , 𝑁𝑡 − 1.
We first explain how to implement this variant of Parareal for the system of linear

ODEs 𝒖′ = 𝐴𝒖 with initial condition 𝒖(0) = 𝒖0 and 𝑡 ∈ (0, 𝑇); the nonlinear case
will be addressed at the end of this section. We use backward Euler for the coarse
solver G and an arbitrary one-step time-integrator for the fine solver F . By noting
that G(𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘+1
𝑛 ) = (𝐼𝑥 − Δ𝑇𝐴)−1𝒖𝑘+1

𝑛 , the new CGC (4.15) involves solving
the 𝑁𝑡 linear equations

(𝐼𝑥 − Δ𝑇𝐴)𝒖𝑘+1
1 = 𝒖𝑘+1

0 + (𝐼𝑥 − Δ𝑇𝐴)𝒃𝑘1 ,
(𝐼𝑥 − Δ𝑇𝐴)𝒖𝑘+1

2 = 𝒖𝑘+1
1 + (𝐼𝑥 − Δ𝑇𝐴)𝒃𝑘2 ,

...

(𝐼𝑥 − Δ𝑇𝐴)𝒖𝑘+1
𝑁𝑡

= 𝒖𝑘+1
𝑁𝑡−1 + (𝐼𝑥 − Δ𝑇𝐴)𝒃𝑘𝑁𝑡

,

𝒖𝑘+1
0 = 𝛼𝒖𝑘+1

𝑁𝑡
+ 𝒖0,

where 𝒃𝑘𝑛+1 = F(𝑇𝑛, 𝑇𝑛+1, �̃�
𝑘
𝑛)−G(𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛) is known from the previous iteration.

Note that these linear systems cannot be solved one by one due to the head–tail
coupling condition 𝒖𝑘+1

0 = 𝛼𝒖𝑘+1
𝑁𝑡

+ 𝒖0. Substituting this condition into the first
equation leads to the all-at-once system

(𝐶𝛼 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ Δ𝑇𝐴)𝑼𝑘+1 = 𝒈𝑘 , (4.16)

where
𝑼𝑘+1 =

((
𝒖𝑘+1

1
)⊤

,
(
𝒖𝑘+1

2
)⊤

, . . . ,
(
𝒖𝑘+1
𝑁𝑡

)⊤)⊤
and

𝐶𝛼 =


1 −𝛼
−1 1

. . .
. . .

−1 1


∈ R𝑁𝑡×𝑁𝑡 , 𝒈𝑘 =


𝒖0 + (𝐼𝑥 − Δ𝑇𝐴)𝒃𝑘1

(𝐼𝑥 − Δ𝑇𝐴)𝒃𝑘2
...

(𝐼𝑥 − Δ𝑇𝐴)𝒃𝑘𝑁𝑡


.

Similarly to the ParaDiag II methods introduced in Section 3.5.2, we can solve for
𝑼𝑘+1 using three steps,

𝑼𝑎,𝑘+1 = (F ⊗ 𝐼𝑥)𝒈𝑘 , (step a)
(𝜆𝑛𝐼𝑥 − Δ𝑇𝐴)𝒖𝑏,𝑘+1

𝑛 = 𝒖𝑎,𝑘+1
𝑛 , 𝑛 = 1, 2, . . . , 𝑁𝑡 , (step b)

𝑼𝑘+1 = (F∗ ⊗ 𝐼𝑥)𝑼𝑏,𝑘+1, (step c)
(4.17)

where {𝜆𝑛} are the eigenvalues of 𝐶𝛼 (see (3.51)), F is the discrete Fourier matrix
(see (3.50)), and

𝑼𝑎,𝑘+1 ≔
((
𝒖𝑎,𝑘+1

1
)⊤

, . . . ,
(
𝒖𝑎,𝑘+1
𝑁𝑡

)⊤)⊤
along with

𝑼𝑏,𝑘+1 ≔
((
𝒖𝑏,𝑘+1

1
)⊤

, . . . ,
(
𝒖𝑏,𝑘+1
𝑁𝑡

)⊤)⊤
.
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Through the diagonalization procedure (4.17), the new CGC (4.15) can be solved
in parallel across the coarse time grid.

From (4.15) we see that the head–tail coupled CGC simplifies to the standard
CGC (4.14) when 𝛼 → 0, and hence we can expect that for sufficiently small 𝛼
this Parareal variant converges as fast as the original Parareal algorithm. However,
due to the roundoff error stemming from the diagonalization of 𝐶𝛼 (as discussed in
Section 3.5.2), an arbitrarily small 𝛼 is impractical, particularly when the working
precision is low, e.g. single or half precision. Fortunately it is not necessary to
use an extremely small 𝛼 for the diagonalization-based CGC to achieve the same
convergence rate as the standard CGC.

Theorem 4.7 (Wu 2018). Let 𝜌 denote the convergence factor of standard Parareal
(4.14), and 𝜌new the convergence factor of the new Parareal variant (4.15), where
the coarse solver G is a stable time-integrator. Then we obtain

𝜌new = 𝜌, if 𝛼 ≤ 𝜌

1 + 𝜌
.

This result was proved for linear problems 𝒖′ = 𝐴𝒖 + 𝑔, where 𝐴 has negative
real eigenvalues. For other scenarios, such as when 𝐴 has complex eigenvalues,
numerical results suggest its validity as well. Since the roundoff error resulting
from the diagonalization procedure grows as 𝛼 decreases, it is clear that the optimal
choice for 𝛼 is 𝛼 = 𝜌/(1 + 𝜌). In practice 𝜌 = 𝑂(10−1), and hence 𝛼 = 𝜌/(1 + 𝜌) =
𝑂(10−1) as well. The roundoff error incurred with a parameter 𝛼 = 𝑂(10−1) is
negligible.

To illustrate the convergence of the new Parareal variant (4.15), we consider
the heat equation (2.3) and the advection–diffusion equation (ADE) (2.5) with
periodic boundary conditions and an initial condition 𝑢(𝑥, 0) = sin(2𝜋𝑥) for 𝑥 ∈
(0, 1). We use backward Euler as the coarse solver G and SDIRK22 from (4.9)
for the fine solver F . The data used here is 𝑇 = 4, 𝐽 = 10, Δ𝑇 = 0.1 and
Δ𝑥 = 1

128 . In Figure 4.12 we present the measured error of Parareal using both the
diagonalization-based and standard CGC. For the diagonalization-based CGC, we
use three values of the parameter 𝛼 to illustrate how the convergence rate depends
on this parameter. For the heat equation, the convergence factor of Parareal with
standard CGC is 𝜌 ≈ 0.22, and thus, according to Theorem 4.7, the threshold
for 𝛼 such that the diagonalization-based CGC achieves the same convergence
rate is 𝜌/(1 + 𝜌) ≈ 0.18. If 𝛼 exceeds this threshold, the diagonalization-based
CGC results in a slower convergence rate. Thus the theoretical analysis accurately
predicts the numerical results shown in Figure 4.12(a). For ADE with 𝜈 = 0.1, 𝜌 ≈
0.39 and the threshold for 𝛼 is 𝜌/(1 + 𝜌) ≈ 0.28. Hence, as seen in Figure 4.12(b),
𝛼 = 0.25 suffices to let the diagonalization-based Parareal converge as fast as the
standard Parareal.

We next address how to adapt the diagonalization-based CGC to nonlinear
problems of the form 𝒖′ = 𝑓 (𝒖) with an initial value 𝒖(0) = 𝒖0. We continue to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000072
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 17 Jul 2025 at 00:34:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000072
https://www.cambridge.org/core


464 M. J. Gander, S. L. Wu and T. Zhou

0 2 4 6 8 10 12 14 16 18 20
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r . .

(a)

0 2 4 6 8 10 12 14 16 18 20 22
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

(b)

Figure 4.12. Measured error of Parareal using the diagonalization-based CGC (see
(4.15)) and the standard CGC (i.e. 𝛼 = 0 in (4.14)).

use backward Euler for the coarse solver G. Then, with

𝒃𝑘𝑛+1 ≔ F(𝑇𝑛, 𝑇𝑛+1, �̃�
𝑘
𝑛) − G(𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛),

the initial part of the CGC algorithm (4.15), that is,

𝒖𝑘+1
𝑛+1 = G

(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘+1
𝑛

)
+ 𝒃𝑘𝑛+1,

can be reformulated as
𝒖𝑘+1
𝑛+1 − 𝒃𝑘𝑛+1 − 𝒖𝑘+1

𝑛

Δ𝑇
= 𝑓
(
𝒖𝑘+1
𝑛+1 − 𝒃𝑘𝑛+1

)
, 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1.

This, together with the head–tail coupling condition 𝒖𝑘+1
0 = 𝛼𝒖𝑘+1

𝑁𝑡
+ 𝒖0, leads to

the nonlinear all-at-once system

(𝐶𝛼 ⊗ 𝐼𝑥)𝑼𝑘+1 − Δ𝑇𝐹(𝑼𝑘+1) = 𝒈𝑘 , (4.18)

where the definitions for 𝑼𝑘+1 and 𝐶𝛼 remain the same as in (4.16), and

𝐹(𝑼𝑘+1) ≔


𝑓
(
𝒖𝑘+1

1 − 𝒃𝑘1
)

𝑓
(
𝒖𝑘+1

2 − 𝒃𝑘2
)

...

𝑓
(
𝒖𝑘+1
𝑁𝑡

− 𝒃𝑘𝑁𝑡

)

, 𝒈𝑘 ≔


𝒃𝑘1 + 𝒖0

𝒃𝑘2
...

𝒃𝑘𝑁𝑡


.

We solve the nonlinear system (4.18) by a quasi-Newton method as previously for
the nonlinear ParaDiag method (see Section 3.5.1),

P 𝑘+1,𝑙
𝛼 Δ𝑼𝑘+1,𝑙 = 𝒈𝑘 − (𝐶𝛼 ⊗ 𝐼𝑥)𝑼𝑘+1,𝑙 + Δ𝑇𝐹(𝑼𝑘+1,𝑙),

𝑼𝑘+1,𝑙+1 = 𝑼𝑘+1,𝑙 + Δ𝑼𝑘+1,𝑙,
(4.19a)
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Figure 4.13. Measured error of Parareal using the two CGCs for Burgers’ equation
with two values of the diffusion parameter 𝜈.

where 𝑙 = 0, 1, . . . , 𝑙max denotes the Newton iteration index. The matrix P 𝑘+1,𝑙
𝛼 is

a block 𝛼-circulant matrix given by

P 𝑘+1,𝑙
𝛼 ≔ 𝐶𝛼 ⊗ 𝐼𝑥 − 𝐼𝑡 ⊗ Δ𝑇𝐴𝑘+1,𝑙, (4.19b)

where 𝐴𝑘+1,𝑙 is the average of the Jacobi matrices,

𝐴𝑘+1,𝑙 ≔
1
𝐽

𝐽∑︁
𝑗=1

∇ 𝑓
(
𝒖𝑘+1,𝑙
𝑛 − 𝒃𝑘𝑛

)
.

The Kronecker tensor product 𝐼𝑡 ⊗ 𝐴𝑘+1,𝑙 serves as an approximation of the Jacobi
matrix ∇𝐹(𝑼𝑘+1,𝑙). We note that the nearest Kronecker product approximation
(NKA), introduced in Section 3.5.1, could also be used to obtain a better approx-
imation of ∇𝐹(𝑼𝑘+1,𝑙), but for simplicity we will not explore this option further.

The matrixP 𝑘+1,𝑙
𝛼 has the same structure as the coefficient matrix in (4.16), which

allows us to solve for the increment Δ𝑼𝑘+1,𝑙 using the diagonalization procedure
outlined in (4.17). The convergence analysis of the new Parareal variant (4.15)
in the nonlinear context is detailed in Wu (2018, Section 4), where it is shown
that the convergence rate mirrors that of Parareal with standard CGC when 𝛼

is chosen appropriately small. We illustrate this by applying Parareal with both
CGCs to Burgers’ equation (2.6), using the same problem set-up and discretization
parameters as in the previously discussed heat and advection–diffusion equation
case. In Figure 4.13 we present the measured errors for two values of the diffusion
parameter 𝜈. We see that for this nonlinear problem too, the influence of 𝛼 on the
convergence rate remains as in the linear case.

Remark 4.2 (Extension to MGRiT). The fundamental mechanism of MGRiT
(4.12) aligns with that of Parareal, and specifically, the CGC can be similarly
represented as in (4.14). However, a direct extension of the diagonalization-based
CGC devised for Parareal in (4.15) to MGRiT leads to divergence regardless of
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the choice of 𝛼. This is because the head–tail-type coupling condition 𝒖𝑘+1
1 =

𝛼𝒖𝑘+1
𝑁𝑡

+ 𝒖1 used is less natural than the one from Gander and Wu (2019) that
appeared a year later, namely

𝒖𝑘+1
1 = 𝛼

(
𝒖𝑘+1
𝑁𝑡

− 𝒖𝑘
𝑁𝑡

)
+ 𝒖1.

Using this more natural head–tail condition, which is consistent at convergence for
MGRiT, was proposed in Wu and Zhou (2019), leading to the convergent MGRiT
variant

𝒖𝑘+1
0 = 𝒖0, 𝒖

𝑘+1
1 = 𝛼

(
𝒖𝑘+1
𝑁𝑡

− 𝒖𝑘
𝑁𝑡

)
+ 𝒖1,

𝒖𝑘+1
𝑛+1 = G

(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘+1
𝑛

)
+ �̃�

𝑘

𝑛+1, 𝑛 = 1, 2, . . . , 𝑁𝑡 − 1,
(4.20)

where

�̃�
𝑘

𝑛+1 = F
(
𝑇𝑛, 𝑇𝑛+1, �̃�

𝑘
𝑛

)
− G
(
𝑇𝑛, 𝑇𝑛+1, �̃�

𝑘
𝑛

)
, 𝑠𝑘𝑛 ≔ F

(
𝑇𝑛−1, 𝑇𝑛, �̃�

𝑘
𝑛−1
)

and

�̃�𝑘
𝑛 =

{
𝒖𝑛, 𝑛 = 0, 1,
𝒖𝑘
𝑛, 𝑛 ≥ 2.

This variant converges at the same rate as the original MGRiT method (4.12),
provided 𝛼 is suitably small; Theorem 4.7 applies to MGRiT in an analogous
manner. For Parareal, we can also use the more natural head–tail condition 𝒖𝑘+1

0 =

𝛼(𝒖𝑘+1
𝑁𝑡

− 𝒖𝑘
𝑁𝑡

) + 𝒖0, which is consistent at convergence, instead of (4.15), and we
obtain the same convergence rate as shown in Theorem 4.7 for the less natural
condition.

4.5.2. Diagonalization-based coarse solver
A fundamentally distinct idea from the ParaDiag CGC method in Section 4.5.1
that combines ParaDiag with Parareal was introduced in Gander and Wu (2020).
The key innovation lies in using the same time-integrator and time-step size for
both the coarse and fine solvers, but implementing the coarse solver through a
diagonalization procedure. This approach can work for hyperbolic problems too,
since it also transports all frequency components in the coarse propagator over a
very long time.

We illustrate this concept for the nonlinear system of ODEs 𝒖′ = 𝑓 (𝒖) with
initial value 𝒖(0) = 𝒖0. For the time discretization, we use the linear-𝜃 method;
a generalization to the 𝑠-stage Runge–Kutta method can be found in the appendix
of Gander and Wu (2020). On each large time interval [𝑇𝑛, 𝑇𝑛+1], the fine solver
F(𝑇𝑛, 𝑇𝑛+1, 𝒖𝑛) computes the solution at 𝑡 = 𝑇𝑛+1 by performing 𝐽 steps of the
linear-𝜃 method sequentially, i.e. F(𝑇𝑛, 𝑇𝑛+1, 𝒖𝑛) = 𝒗𝐽 , with 𝒗𝐽 being the final
solution of

𝒗 𝑗+1 − 𝒗 𝑗 = Δ𝑡 [𝜃 𝑓 (𝒗 𝑗+1) + (1 − 𝜃) 𝑓 (𝒗 𝑗)], 𝑗 = 0, 1, . . . , 𝐽 − 1, (4.21)
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with initial condition 𝒗0 = 𝒖𝑛, where

Δ𝑡 =
Δ𝑇

𝐽
=
𝑇𝑛+1 − 𝑇𝑛

𝐽

and 𝜃 = 1 or 𝜃 = 1
2 . For the coarse solver, denoted by F∗

𝛼(𝑇𝑛, 𝑇𝑛+1, 𝒖𝑛), we solve
the nonlinear system with a head–tail coupled condition,

𝒗 𝑗+1 − 𝒗 𝑗 = Δ𝑡 [𝜃 𝑓 (𝒗 𝑗+1) + (1 − 𝜃) 𝑓 (𝒗 𝑗)], 𝑗 = 0, 1, . . . , 𝐽 − 1,
𝒗0 = 𝛼𝒗𝐽 + (1 − 𝛼)𝒖𝑛.

(4.22)

This system can be recast as the nonlinear all-at-once system

(𝐶𝛼 ⊗ 𝐼𝑥)𝑽 − Δ𝑡𝐹(𝑽)︸                      ︷︷                      ︸
≔K(𝑽 )

= 𝒃(𝒖𝑛), (4.23)

where
𝑽 ≔ (𝒗⊤1 , 𝒗

⊤
2 , . . . , 𝒗

⊤
𝐽 )⊤, 𝒃(𝒖𝑛) ≔ ((1 − 𝛼)𝒖⊤

𝑛 , 0, . . . , 0)⊤,

and

𝐶𝛼 ≔


1 −𝛼
−1 1

. . .
. . .

−1 1


,

𝐹(𝑽) ≔


𝜃 𝑓 (𝒗1) + (1 − 𝜃) 𝑓 (𝛼𝒗𝐽 + (1 − 𝛼)𝒖𝑛)

𝜃 𝑓 (𝒗2) + (1 − 𝜃) 𝑓 (𝒗1)
...

𝜃 𝑓 (𝒗𝐽 ) + (1 − 𝜃) 𝑓 (𝒗𝐽−1)


.

(4.24)

We solve (4.23) with the quasi-Newton method

P𝛼(𝑽𝑙)Δ𝑽𝑙 = 𝒃(𝒖𝑛) −K(𝑽𝑙), 𝑽𝑙+1 = 𝑽𝑙 + Δ𝑽𝑙, (4.25a)

where 𝑙 = 0, 1, . . . , 𝑙max, and the matrix P𝛼(𝑽𝑙) is a block 𝛼-circulant matrix
serving as an approximation to the Jacobi matrix

∇K(𝑽𝑙) = 𝐶𝛼 ⊗ 𝐼𝑥 − Δ𝑡(�̃�𝜃,𝛼 ⊗ 𝐼𝑥)∇𝐹(𝑽𝑙).

It is defined by
P𝛼(𝑽𝑙) = 𝐶𝛼 ⊗ 𝐼𝑥 − Δ𝑡�̃�𝛼,𝜃 ⊗ ∇f(𝑽𝑙), (4.25b)

where �̃�𝛼,𝜃 is an 𝛼-circulant matrix given by

�̃�𝜃,𝛼 ≔


𝜃 (1 − 𝜃)𝛼

1 − 𝜃 𝜃

. . .
. . .

1 − 𝜃 𝜃


,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000072
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 17 Jul 2025 at 00:34:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000072
https://www.cambridge.org/core


468 M. J. Gander, S. L. Wu and T. Zhou

and ∇ 𝑓 (𝑽𝑙) represents the average of the 𝐽 Jacobi blocks of ∇𝐹(𝑽𝑙),

∇ 𝑓 (𝑽𝑙) ≔
1
𝐽

[
𝐽−1∑︁
𝑗=1

∇ 𝑓
(
𝒗𝑙𝑗
)
+ ∇ 𝑓

(
𝛼𝒗𝑙𝐽 + (1 − 𝛼)𝒖𝑛

) ]
.

Using this notation, we can write the Parareal algorithm from Gander and Wu
(2020) as

𝒖𝑘+1
𝑛+1 = F∗

𝛼

(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘+1
𝑛

)
+ F

(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛

)
− F∗

𝛼

(
𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛

)
, (4.26)

where 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1 denotes the time-step index.
For linear problems, i.e. 𝑓 (𝒖) = 𝐴𝒖, the all-at-once system (4.23) becomes

(𝐶𝛼 ⊗ 𝐼𝑥 − �̃�𝜃,𝛼 ⊗ Δ𝑡𝐴)𝑽 = 𝒃(𝒖𝑛), (4.27)

with
𝒃(𝒖𝑛) = ([(𝐼𝑥 + Δ𝑡(1 − 𝜃)𝐴)(1 − 𝛼)𝒖𝑛]⊤, 0, . . . , 0)⊤.

The coarse solver F∗
𝛼(𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛) is defined by

F∗
𝛼(𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛) ≔ (𝐻𝐽 ⊗ 𝐼𝑥)𝑽,

where 𝐻𝐽 ≔ (0, . . . , 0, 1) ∈ R1×𝐽 . With 𝑽 = (𝒗⊤1 , 𝒗
⊤
2 , . . . , 𝒗

⊤
𝐽

)⊤, we have
F∗

𝛼(𝑇𝑛, 𝑇𝑛+1, 𝒖
𝑘
𝑛) = 𝒗𝐽 , and the computation of 𝑽 in (4.27) is equivalent to solving

the all-at-once system

𝒗 𝑗+1 − 𝒗 𝑗 = Δ𝑡𝐴[𝜃𝒗 𝑗+1 + (1 − 𝜃)𝒗 𝑗], 𝑗 = 0, 1, . . . , 𝐽 − 1,
𝒗0 = 𝛼𝒗𝐽 + (1 − 𝛼)𝒖𝑘

𝑛.
(4.28)

It is clear that the coarse solver reduces to the fine solver if 𝛼 = 0, and in this limit
Parareal (4.26) converges in only one iteration, but without any speed-up because
we have to solve (4.28) for F∗

𝛼(𝑇𝑛, 𝑇𝑛+1, 𝒖
𝑘
𝑛) = 𝒗𝐽 sequentially. For 𝛼 ∈ (0, 1), we

solve (4.28) in one shot by diagonalization, which is parallel for the 𝐽 fine time
points, and thus the computation time is approximately 𝐽 times less than the fine
solver F(𝑇𝑛, 𝑇𝑛+1, 𝒖

𝑘
𝑛). This Parareal variant has different convergence rates for

parabolic and hyperbolic problems.

Theorem 4.8 (Gander and Wu 2020). For linear initial value problems 𝒖′ =

𝐴𝒖 + 𝑔 with 𝒖(0) = 𝒖0 and 𝐴 ∈ C𝑁𝑥×𝑁𝑥 , let {𝒖𝑘
𝑛} be the 𝑘th iterate of the Parareal

variant (4.26) and let {𝒖𝑛} be the converged solution. Then, for any stable one-step
Runge–Kutta method used for F and F∗

𝛼, the global error

𝒆𝑘 = max
𝑛=1,2,...,𝑁𝑡

∥𝒖𝑛 − 𝒖𝑘
𝑛∥∞

satisfies the estimate
𝒆𝑘 ≤ 𝜌𝑘𝒆0,
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Figure 4.14. Error of the Parareal variant (4.26) for the heat equation. The dotted
lines denote the error predicted by the theoretical convergence factor 𝜌 = 𝛼.

where the convergence factor 𝜌 is given by

𝜌 =


𝛼, if 𝜎(𝐴) ⊂ R−,
2𝛼𝑁𝑡

1 + 𝛼
, if 𝜎(𝐴) ⊂ iR.

(4.29)

Here 𝜎(𝐴) denotes the spectrum of 𝐴. When the matrix 𝐴 arises from semi-
discretizing the heat equation, i.e. 𝐴 ≈ Δ, we have 𝜎(𝐴) ⊂ R−. In this case the
convergence factor 𝜌 = 𝛼 implies that the Parareal variant (4.26) converges with
a rate independent of 𝑁𝑡 . For wave propagation problems, e.g. the second-order
wave equation (2.7) and the Schr¥odinger equation, all the eigenvalues of the discrete
matrix 𝐴 are imaginary, i.e. 𝜎(𝐴) ⊂ iR. For this kind of problem, the convergence
factor increases linearly in 𝑁𝑡 . However, this does not necessarily imply that the
convergence rate deteriorates, especially when 𝛼 is relatively small and 𝑁𝑡 is not
too large.

We now illustrate the convergence of the Parareal variant (4.26) for the heat
equation (2.3) with homogeneous Dirichlet boundary conditions and initial condi-
tion 𝑢(𝑥, 0) = sin2(2𝜋𝑥) with 𝑥 ∈ (0, 1). For both F and F∗

𝛼, we use the trapezoidal
rule and the discretization parameters Δ𝑇 = 1

12 , 𝐽 = 10, Δ𝑥 = 1
100 . For two values

of 𝑁𝑡 and three parameters 𝛼, Figure 4.14 shows the measured error, where the
error predicted by the convergence factor 𝜌 = 𝛼 is plotted as dotted lines. We see
that the theoretical convergence factor is sharp, and the convergence rate is indeed
independent of 𝑁𝑡 .

We next consider the wave equation (2.7) with periodic boundary conditions and
initial conditions 𝑢(𝑥, 0) = sin2(2𝜋𝑥) and 𝜕𝑡𝑢(𝑥, 0) = 0. After space discretization,
the system of ODEs is given by

𝒘′ = 𝑨𝒘, 𝒘(0) =
[
sin2(2𝜋𝒙ℎ)

0

]
, 𝑨 ≔

[
𝐼𝑥

𝐴

]
,
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Figure 4.15. Measured error of the Parareal variant (4.26) with two values of the
parameter 𝛼 for the wave equation.
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Figure 4.16. The convergence factor 𝜌 (dotted line) for the wave equation gives
quite a sharp bound on the measured error for small 𝛼𝑁𝑡 , while for large 𝛼𝑁𝑡 the
bound is not sharp.

where 𝒘 = (𝒖⊤, (𝒖′)⊤)⊤ and 𝐴 ≈ Δ. All the eigenvalues of 𝑨 are purely imaginary,
and thus according to (4.29) the convergence rate of the Parareal variant (4.26)
deteriorates as 𝑁𝑡 grows. For relatively large 𝛼, e.g. 𝛼 = 0.01, this is indeed the
case, as shown in Figure 4.15(a). However, for small 𝛼, the influence of 𝑁𝑡 on the
convergence rate becomes insignificant, as shown in Figure 4.15(b). For example,
as 𝑁𝑡 increases from 24 to 960, we only require an additional two iterations to
reach the stopping tolerance, denoted by the horizontal line, i.e. the order of the
discretization error max{Δ𝑡2,Δ𝑥2}.

In contrast to the heat equation, for wave equations the convergence factor given
in (4.29) is not always sharp, depending on the product 𝛼𝑁𝑡 . This is illustrated
in Figure 4.16, where we consider three groups of (𝛼, 𝑁𝑡 ). For a small product,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000072
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 17 Jul 2025 at 00:34:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000072
https://www.cambridge.org/core


Time parallelization for hyperbolic and parabolic problems 471

(a) (b)

Figure 4.17. Iteration numbers of the parareal variant (4.26) for Burgers’ equation
when the global error reaches 10−8, with three values of the diffusion parameter 𝜈.

i.e. 𝛼 = 10−4 and 𝑁𝑡 = 24, the convergence factor quite accurately predicts the
measured error. For the other two values of (𝛼, 𝑁𝑡 ), the linear bound is not sharp,
and we observe superlinear convergence of the method.

For nonlinear problems, 𝒖′ = 𝑓 (𝒖), the convergence analysis of the Parareal vari-
ant (4.26) can be found in Gander and Wu (2020, Section 4), under the assumption
that the solution of the nonlinear all-at-once system (4.23) is solved exactly and that
the nonlinear function 𝑓 satisfies some Lipschitz condition. The main conclusion is
that the method converges with a rate 𝜌 = 𝑂(𝛼) when 𝛼 is small, which is similar to
the result for the linear case. We illustrate this for Burgers’ equation (2.6) with peri-
odic boundary conditions and initial condition 𝑢(𝑥, 0) = sin2(2𝜋𝑥) for 𝑥 ∈ (0, 1).
Let Δ𝑇 = 0.1, 𝐽 = 10 and Δ𝑥 = 1

100 . Then, by fixing 𝑁𝑡 = 40, in Figure 4.17(a)
we show the iteration number for several values of 𝛼 when the global error reaches
10−8. Clearly a smaller 𝛼 accelerates convergence. Concerning the influence of 𝜈,
it seems that for small 𝛼 it has only a minor influence on the convergence rate, but
for large 𝛼 the convergence rate deteriorates when 𝜈 decreases. In Figure 4.17(b)
we show the iteration numbers when 𝛼 = 10−3 and 𝑁𝑡 varies from 10 to 160, which
indicates that the convergence rate is robust in terms of 𝑁𝑡 .

The two Parareal variants (4.15) and (4.26) introduced in this section apply
ParaDiag to standard Parareal in different ways. For the former, diagonalization
is used for the 𝑁𝑡 coarse time points, changing the CGC. For the second variant,
diagonalization is used for each large time interval [𝑇𝑛, 𝑇𝑛+1] across the 𝐽 fine time
points, defining a special coarse solver while keeping the CGC as in the standard
Parareal. These two variants have distinct scopes of application: the first, like
the standard Parareal, works primarily for parabolic problems, while the second is
effective for both parabolic and hyperbolic problems.
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4.6. Space–time multigrid (STMG)

The final parallel method we wish to introduce is the space–time multigrid (STMG)
method, which is based on using the multigrid (MG) method in both space and time.
After early seminal contributions (Hackbusch 1984, Horton and Vandewalle 1995),
it was recognized that block Jacobi smoothers in time are a crucial component
(Gander and Neumüller 2016), leading to a method as effective as when MG is
applied to Poisson problems, using only standard multigrid components in STMG.
For the heat equation (2.3) or the advection–diffusion equation (2.5), the STMG
method can be described as follows: using a spatial discretization with mesh size
Δ𝑥 results in a system of ODEs 𝒖′ = 𝐴𝒖 + 𝒇 , to which we apply a one-step
time-integrator,

𝑟1𝒖𝑛+1 = 𝑟2𝒖𝑛 + �̃� 𝑛, 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1, (4.30)

where 𝒖0 is the initial value, and 𝑟1 and 𝑟2 are matrix polynomials of Δ𝑡𝐴 (see
(3.57) for backward Euler and the trapezoidal rule). The matrix 𝐴 ∈ R𝑁𝑥×𝑁𝑥 is the
discrete matrix of the Laplacian 𝜕𝑥𝑥 or the advection–diffusion operator −𝜕𝑥 +𝜈𝜕𝑥𝑥
with mesh size Δ𝑥. As in ParaDiag described in Section 3.5, we collect the 𝑁𝑡

difference equations in the all-at-once system
𝑟1
−𝑟2 𝑟1

. . .
. . .

−𝑟2 𝑟1

︸                     ︷︷                     ︸
≔K


𝒖1
𝒖2
...

𝒖𝑁𝑡

︸︷︷︸
≔𝑼

= 𝒃, (4.31)

where 𝒃 is a suitable right-hand side vector.
STMG solves for 𝑼 within a multigrid framework, using a damped block Jacobi

iteration as smoother. Starting from an initial approximation𝑼ini of𝑼, the smoother
S produces a new approximation 𝑼new by computing

𝑼new = S𝜂(𝒃,𝑼ini, 𝑠) :



𝑼0 = 𝑼ini,

for 𝑗 = 0, 1, . . . , 𝑠 − 1 :
(𝐼𝑡 ⊗ 𝑟1)Δ𝑼 𝑗 = 𝜂(𝒃 −K𝑼 𝑗),
𝑼 𝑗+1 = 𝑼 𝑗 + Δ𝑼 𝑗 ,

𝑼new = 𝑼𝑠,

(4.32)

where 𝑠 is the number of smoothing iterations and 𝜂 is the damping parameter.
Since 𝐼𝑡 ⊗ 𝑟1 is a block diagonal matrix, for each smoothing step the 𝑁𝑡 subvectors
of Δ𝑼 𝑗 can be solved in parallel, making this a parallel-in-time smoother. We also
need restriction and prolongation operators in space and time. For illustration, we

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000072
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 17 Jul 2025 at 00:34:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000072
https://www.cambridge.org/core


Time parallelization for hyperbolic and parabolic problems 473

show these two operators in space with 𝑁𝑥 = 7,

𝑃𝑥 ≔



1
2
1
1
2

1
2
1
1
2

1
2
1
1
2


∈ R7×3, 𝑅𝑥 =

1
2
𝑃⊤
𝑥 ∈ R3×7. (4.33)

Similar notations apply to the other two operators 𝑃𝑡 and 𝑅𝑡 for the time variable.
We can now define the two-level variant of STMG from iteration 𝑘 to 𝑘 + 1 as

𝑼𝑘+1/3 = S𝜂(𝒃,𝑼𝑘 , 𝑠1),
𝒓 = 𝒃 −K𝑼𝑘+1/3, 𝒓c = [𝑅𝑥Mat(𝒓)]𝑅⊤

𝑡 ,

𝒆c = K−1
c Vec(𝒓c), 𝒆 = [𝑃𝑥Mat(𝒆c)]𝑃⊤

𝑡 ,

𝑼𝑘+2/3 = 𝑼𝑘+1/3 + Vec(𝒆),
𝑼𝑘+1 = S𝜂(𝒃,𝑼𝑘+2/3, 𝑠2),

(4.34)

where ‘Vec’ denotes the vectorization operation from a matrix, and ‘Mat’ denotes
the reverse operation, converting a vector to the corresponding matrix. In practice
we use the reshape command in MATLAB. The matrix Kc is the all-at-once
matrix obtained with larger space and time discretization parameters Δ𝑇 = 2Δ𝑡 and
Δ𝑋 = 2Δ𝑥, that is,

Kc =


𝑟𝑐1
−𝑟𝑐2 𝑟𝑐1

. . .
. . .

−𝑟𝑐2 𝑟𝑐1

︸                      ︷︷                      ︸
𝑁𝑐
𝑡 blocks

,

where 𝑟𝑐1 and 𝑟𝑐2 are matrix polynomials of Δ𝑇𝐴𝑐, with 𝐴𝑐 ∈ R𝑁𝑐
𝑥 ×𝑁𝑐

𝑥 being the
coarse discrete matrix of the space derivative(s) with Δ𝑋 , for example,

𝑟𝑐1 = 𝐼𝑐𝑥 − Δ𝑇𝐴𝑐, 𝑟
𝑐
2 = 𝐼𝑐𝑥 , backward Euler,

𝑟𝑐1 = 𝐼𝑐𝑥 −
1
2
Δ𝑇𝐴𝑐, 𝑟

𝑐
2 = 𝐼𝑐𝑥 +

1
2
Δ𝑇𝐴𝑐, trapezoidal rule.

In practice we let 𝑁𝑥 = 2𝑙𝑥 − 1 and 𝑁𝑡 = 2𝑙𝑡 − 1, with 𝑙𝑥 , 𝑙𝑡 ≥ 2 being integers, and
thus 𝑁𝑐

𝑥 = 2𝑙𝑥−1 − 1 and 𝑁𝑐
𝑡 = 2𝑙𝑡−1 − 1. STMG is obtained naturally by applying

the two-level variant recursively.
There is an important difference between STMG and the parabolic MG method

proposed 40 years ago (Hackbusch 1984): for parabolic MG, we use a pointwise
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Gauss–Seidel iteration as smoother, defined by

𝑼new = SGS(𝒃,𝑼ini, 𝑠) :



for 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1
𝒖0
𝑛+1 = 𝒖ini

𝑛+1,

for 𝑗 = 0, 1, . . . , 𝑠 − 1
(𝐷 + 𝐿)Δ𝒖 𝑗

𝑛+1 = �̃� 𝑛 + 𝑟2𝒖
𝑠
𝑛 − 𝑟1𝒖

𝑗

𝑛+1,

𝒖 𝑗+1
𝑛+1 = 𝒖 𝑗

𝑛+1 + Δ𝒖 𝑗

𝑛+1,

𝒖new
𝑛+1 = 𝒖𝑠

𝑛+1,

(4.35)

where 𝒖𝑠
0 = 𝒖0 and 𝐷 and 𝐿 represent the diagonal and upper triangular parts of 𝑟1.

Here 𝑼ini ≔ (𝒖⊤
0 , (𝒖

ini
1 )⊤, . . . , (𝒖ini

𝑁𝑡
)⊤)⊤, and similarly 𝑼new consists of the vectors

𝒖0 and 𝒖new
1 , . . . , 𝒖new

𝑁𝑡
. This smoother operates sequentially in time: we must

complete the smoothing iteration at time-step 𝑛 to obtain 𝒖𝑠
𝑛, which is necessary

for performing the smoothing iteration at time-step 𝑛 + 1. After smoothing, we
restrict the residual 𝒃 −K𝑼new in space–time, as in standard multigrid, to a coarser
grid. There, we solve a coarse problem (and repeat this procedure recursively in
practice). Hackbusch (1984) focused on coarsening in space for this method, and
found that for the heat equation, parabolic MG converges very rapidly. Gander and
Lunet (2024) examined the performance of a two-level version of the parabolic
MG method that coarsens in both space and time, and found that it converges
only slowly. Horton and Vandewalle (1995) improved upon this slow convergence
by using special multigrid components adapted to the interpretation of the time
direction as a strongly advective term; see also Janssen and Vandewalle (1996) and
Van Lent and Vandewalle (2002) for multigrid waveform relaxation variants.

Returning to STMG (4.34), the smoother plays a crucial role in achieving good
performance. The fundamental concept in designing an effective smoother is to
eliminate as much of the high-frequency error components as possible within a
minimal number of smoothing iterations. This allows the remaining low-frequency
errors to be well-represented on the coarse grids and to be removed via coarse
grid correction. A valuable tool for accomplishing this objective is local Fourier
analysis (LFA), which involves neglecting the initial and boundary conditions of
the problem and just focusing on how the finite difference stencil affects a given
Fourier mode in the error,

𝑢
𝑗
𝑛,𝑚 = 𝐶

𝑗

𝜔, 𝜉
ei𝜔𝑛Δ𝑡ei𝜉𝑚Δ𝑥 , (4.36)

where 𝒖 𝑗
𝑛 ≔ (𝑢 𝑗

𝑛,1, . . . , 𝑢
𝑗

𝑛,𝑁𝑥
)⊤ and i =

√
−1. To apply LFA for the damped Jacobi

iteration (4.32), we consider the one-dimensional heat equation (2.3) discretized
using centred finite differences in space and backward Euler in time. In this case,

𝐴 =
1

Δ𝑥2 Tri(1,−2, 1), 𝑟1 = 𝐼𝑥 − Δ𝑡𝐴, 𝑟2 = 𝐼𝑥 .
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For each iteration 𝑗 , the block Jacobi iteration (4.32) consists of the 𝑁𝑡 difference
equations

𝑟1
(
𝒖 𝑗+1
𝑛+1 − 𝒖 𝑗

𝑛+1
)
= −𝜂

(
𝑟1𝒖

𝑗

𝑛+1 − 𝑟2𝒖
𝑗
𝑛

)
, (4.37)

where we set the right-hand side 𝒃 in (4.32) to zero and consider 𝑼 𝑗 as the error at
the 𝑗 th iteration.

To apply LFA to (4.37), we first consider the result when the space discrete
operator 𝐴 acts on the Fourier mode 𝑢𝑙

𝑛+1,𝑚 (with 𝑙 = 𝑗 , 𝑗 + 1),

𝐴𝑢𝑙𝑛+1,𝑚 = 𝐶𝑙
𝜔, 𝜉 ei𝜔(𝑛+1)Δ𝑡 ei𝜉 (𝑚−1)Δ𝑥 − 2ei𝜉𝑚Δ𝑥 + ei𝜉 (𝑚+1)Δ𝑥

Δ𝑥2

= 𝐶𝑙
𝜔, 𝜉 ei𝜔(𝑛+1)Δ𝑡ei𝜉𝑚Δ𝑥 e−i𝜉Δ𝑥 − 2 + ei𝜉Δ𝑥

Δ𝑥2

=
2(cos(𝜉Δ𝑥) − 1)

Δ𝑥2 𝐶𝑙
𝜔, 𝜉 ei𝜔(𝑛+1)Δ𝑡ei𝜉𝑚Δ𝑥 .

(4.38)

Hence

𝑟1
(
𝒖 𝑗+1
𝑛+1 − 𝒖 𝑗

𝑛+1
)
=

(
1 − 2Δ𝑡(cos(𝜉Δ𝑥) − 1)

Δ𝑥2

)(
𝐶

𝑗+1
𝜔,𝜉

− 𝐶
𝑗

𝜔, 𝜉

)
ei𝜔(𝑛+1)Δ𝑡ei𝜉 𝒙ℎ ,

and

𝑟1𝒖
𝑗

𝑛+1 − 𝑟2𝒖
𝑗
𝑛 = 𝒖 𝑗

𝑛+1 − 𝒖 𝑗
𝑛 − Δ𝑡𝐴𝒖 𝑗

𝑛+1

=

(
1 − e−i𝜔Δ𝑡 − 2Δ𝑡(cos(𝜉Δ𝑥) − 1)

Δ𝑥2

)
𝐶

𝑗

𝜔, 𝜉
ei𝜔(𝑛+1)Δ𝑡ei𝜉 𝒙ℎ ,

where 𝒙ℎ = Vec(𝑚Δ𝑥). Now, from (4.37), we have(
1 − 2Δ𝑡(cos(𝜉Δ𝑥) − 1)

Δ𝑥2

)(
𝐶

𝑗+1
𝜔,𝜉

− 𝐶
𝑗

𝜔, 𝜉

)
= 𝜂

(
1 − e−i𝜔Δ𝑡 − 2Δ𝑡(cos(𝜉Δ𝑥) − 1)

Δ𝑥2

)
𝐶

𝑗

𝜔, 𝜉
,

that is,
𝐶

𝑗+1
𝜔,𝜉

= 𝜌(𝜔, 𝜉, 𝜂)𝐶 𝑗

𝜔, 𝜉
,

with 𝜌 being the convergence factor given by

𝜌(𝜔, 𝜉, 𝜂) = 1 − 𝜂

(
1 − e−i𝜔Δ𝑡

1 + 2Δ𝑡
Δ𝑥2 (1 − cos(𝜉Δ𝑥))

)
, (4.39)

where 𝜔Δ𝑡 ∈ (−𝜋, 𝜋) and 𝜉Δ𝑥 ∈ (−𝜋, 𝜋). By calculating the maximum of 𝜌 with
respect to 𝜉 and 𝜔 and then minimizing the maximum, the following result was
proved in Gander and Lunet (2024, Chapter 4); see Gander and Neumüller (2016)
for a comprehensive analysis for more general discretizations.
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Figure 4.18. Maximum of the convergence factor over the high frequencies for the
advection–diffusion equation (ADE) for three values of the diffusion parameter 𝜈,
i.e. 𝜌max = max(Δ𝑥 𝜉 ,Δ𝑡𝜔)∈(−𝜋,𝜋)×(𝜋/2, 𝜋) 𝜌(𝜔, 𝜉, 𝜂).

Theorem 4.9. For the one-dimensional heat equation discretized with centred
finite differences and backward Euler, the optimal choice of 𝜂 used in the damped
Jacobi smoother (4.32) always permitting time coarsening is 𝜂 = 1

2 . With this
choice, all high frequencies in time, 𝜔 ∈ ±(𝜋/(2Δ𝑡), 𝜋/Δ𝑡), are damped by a factor
of at least 1/

√
2. If in addition the mesh parameters satisfy Δ𝑡/Δ𝑥2 ≥ 1/

√
2, then

the high frequencies in space, 𝜉 ∈ ±(𝜋/(2Δ𝑥), 𝜋/Δ𝑥), are also damped by a factor
of at least 1/

√
2, and we can do space coarsening as well.

A refined analysis concerning the optimality can be found in Chaudet-Dumas,
Gander and Pogozelskyte (2024).

For the advection–diffusion equation (2.5), we can also apply LFA to two-level
STMG. Here, the discrete matrix obtained from centred finite differences is

𝐴 =
𝜈

Δ𝑥2 Tri(1,−2, 1) + 1
2Δ𝑥

Tri(−1, 0, 1).

Similarly to (4.38), the result when the spatial discrete operator 𝐴 acts on the
Fourier mode 𝑢𝑙

𝑛+1,𝑚 (with 𝑙 = 𝑗 , 𝑗 + 1) is

𝐴𝑢𝑙𝑛+1,𝑚 =

[
2𝜈(cos(𝜉Δ𝑥) − 1)

Δ𝑥2 + ei𝜉Δ𝑥 − e−i𝜉Δ𝑥

2Δ𝑥

]
𝐶𝑙
𝜔, 𝜉 ei𝜔(𝑛+1)Δ𝑡ei𝜉𝑚Δ𝑥

=

[
2𝜈(cos(𝜉Δ𝑥) − 1)

Δ𝑥2 + i sin(𝜉Δ𝑥)
Δ𝑥

]
𝐶𝑙
𝜔, 𝜉 ei𝜔(𝑛+1)Δ𝑡ei𝜉𝑚Δ𝑥 .

From this, we obtain the convergence factor 𝜌 in Fourier space as

𝜌(𝜔, 𝜉, 𝜂) = 1 − 𝜂

(
1 − e−i𝜔Δ𝑡

1 + 2𝜈Δ𝑡
Δ𝑥2 (1 − cos(𝜉Δ𝑥)) + i Δ𝑡

Δ𝑥
sin(𝜉Δ𝑥)

)
. (4.40)

Heuristically, we can still use 𝜂 = 1
2 as the damping parameter for coarsening in

time; see Figure 4.18. The validity of the choice 𝜂 = 1
2 for the damping parameter

is further illustrated in Figure 4.19 in a numerical experiment for the two-level
variant of STMG: for both the heat equation and the advection–diffusion equation
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Figure 4.19. Dependence of the two-level STMG error after 𝑘 = 5, 10, 15 iterations
on the choice of the damping parameter 𝜂: (a) heat equation, (b) advection–diffusion
equation with 𝜈 = 0.01. Here we use one block Jacobi smoothing iteration for
STMG.
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Figure 4.20. Measured error of two-level STMG with one and three block Jacobi
smoothing steps for the advection–diffusion equation (ADE) and the heat equation
with damping parameter 𝜂 = 1

2 .

(ADE), we show the errors after 5, 10 and 15 iterations for several values of 𝜂.
Clearly, 𝜂 = 1

2 is a reasonable choice to minimize the error in two-level STMG for
both equations.

In Figure 4.20 we show the convergence behaviour of two-level STMG for both
the heat equation and the advection–diffusion equation with 𝜂 = 1

2 and three values
of 𝜈. For both equations, two-level STMG converges faster when the number of
smoothing iterations is increased. Compared to the heat equation, the convergence
rate is worse for the advection–diffusion equation, but interestingly it is less sensitive
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Figure 4.21. Error of STMG using the trapezoidal rule and different numbers of
smoothing steps for 𝜂 ∈ [0.1, 1.1].

to 𝜈 when the number of smoothing iterations is large and a superlinear convergence
mechanism sets in, as we see in Figure 4.20(b).

The convergence rate of STMG, however, depends on the choice of the time-
integrator. The results in Figure 4.21 for two-level STMG reveal that using the
trapezoidal rule as time-integrator results in a substantially poorer convergence rate
compared to using backward Euler. In particular, for the heat equation, two-level
STMG appears to have convergence problems regardless of the damping parameter
adjustments, even with up to ten smoothing steps. Interestingly, two-level STMG
converges for the advection–diffusion equation, and doing more smoothing steps
enhances the convergence rate. Nonetheless, the optimal damping parameter is
found to be 𝜂 ≈ 0.8, in contrast to 𝜂 = 1

2 we obtained for backward Euler.
In real large-scale parallel computations on today’s supercomputers, excellent

weak and strong scaling is achieved with the full STMG method, as shown in
Table 4.1 for a three-dimensional heat equation model problem, taken from Gander
and Neumüller (2016).

We next extend STMG to nonlinear problems of the form

𝒖′ = 𝑓 (𝒖), 𝒖(0) = 𝒖0, 𝑡 ∈ (0, 𝑇), (4.41)

where 𝒖 ∈ R𝑁𝑥 and 𝑓 : R𝑁𝑥 → R𝑁𝑥 is defined by the discretization of a PDE in
space. To describe the idea, we apply the linear-𝜃 method to the nonlinear system
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Table 4.1. Weak (left) and strong (right) scaling results of a modern space–time multigrid (STMG) method applied to a three-
dimensional heat equation. Solution times of classical time-stepping with best possible parallelization in space only are also
shown in the column ‘Fwd. sub.’.

Cores Time-steps D.o.f. Iter. Time Fwd. sub. Time-steps D.o.f. Iter. Time

1 2 59 768 7 28.8 19.0 512 15 300 608 7 7 635.2
2 4 119 536 7 29.8 37.9 512 15 300 608 7 3 821.7
4 8 239 072 7 29.8 75.9 512 15 300 608 7 1 909.9
8 16 478 144 7 29.9 152.2 512 15 300 608 7 954.2

16 32 956 288 7 29.9 305.4 512 15 300 608 7 477.2
32 64 1 912 576 7 29.9 613.6 512 15 300 608 7 238.9
64 128 3 825 152 7 29.9 1 220.7 512 15 300 608 7 119.5

128 256 7 650 304 7 29.9 2 448.4 512 15 300 608 7 59.7
256 512 15 300 608 7 30.0 4 882.4 512 15 300 608 7 30.0
512 1 024 30 601 216 7 29.9 9 744.2 524 288 15 667 822 592 7 15 205.9

1 024 2 048 61 202 432 7 30.0 19 636.9 524 288 15 667 822 592 7 7 651.5
2 048 4 096 122 404 864 7 29.9 38 993.1 524 288 15 667 822 592 7 3 825.3
4 096 8 192 244 809 728 7 30.0 81 219.6 524 288 15 667 822 592 7 1 913.4
8 192 16 384 489 619 456 7 30.0 162 551.0 524 288 15 667 822 592 7 956.6

16 384 32 768 979 238 912 7 30.0 313 122.0 524 288 15 667 822 592 7 478.1
32 768 65 536 1 958 477 824 7 30.0 625 686.0 524 288 15 667 822 592 7 239.3
65 536 131 072 3 916 955 648 7 30.0 1 250 210.0 524 288 15 667 822 592 7 119.6

131 072 262 144 7 833 911 296 7 30.0 2 500 350.0 524 288 15 667 822 592 7 59.8
262 144 524 288 15 667 822 592 7 30.0 4 988 060.0 524 288 15 667 822 592 7 30.0
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of ODEs (4.41), leading to the all-at-once system

(𝐵 ⊗ 𝐼𝑥)𝑼 − Δ𝑡(�̃� ⊗ 𝐼𝑥) 𝑓 (𝑼)︸                                ︷︷                                ︸
≔K(𝑼)

= 𝒃, (4.42)

where 𝒃 = (𝒖⊤
0 + Δ𝑡(1 − 𝜃) 𝑓 ⊤(𝒖0), 0, . . . , 0)⊤, 𝑼 = (𝒖⊤

1 , . . . , 𝒖
⊤
𝑁𝑡

)⊤ and

𝐵 ≔


1
−1 1

. . .
. . .

−1 1


, �̃� ≔


𝜃

1 − 𝜃 𝜃

. . .
. . .

1 − 𝜃 𝜃


, 𝑓 (𝑼) ≔


𝒖1
𝒖2
...

𝒖𝑁𝑡


.

To formulate STMG (4.42), similarly to (4.32), we first define a nonlinear block
Jacobi smoother 𝑼new = Snon,𝜂(𝒃,𝑼ini, 𝑠) by

�̃�
0
= 𝑼ini,

for 𝑗 = 0, 1, . . . , 𝑠 − 1 :
solve Δ�̃�

𝑗 − Δ𝑡𝜃 𝑓 (Δ�̃� 𝑗) = 𝜂(𝒃 −K(�̃� 𝑗)),
�̃�

𝑗+1
= �̃�

𝑗 + Δ�̃�
𝑗
,

𝑼new = �̃�
𝑠
,

(4.43)

where the correction term Δ�̃�
𝑗 is solved via an inner solver, e.g. Newton’s iteration.

However, we cannot obtain a theoretically optimized estimate for the damping
parameter 𝜂 in (4.43), since LFA cannot be used in the nonlinear case.

Following Brandt (1977), we now define a nonlinear STMG method for (4.42)
using the full approximation scheme,

𝑼𝑘+1/3 = Snon,𝜂(𝒃,𝑼𝑘 , 𝑠1),
𝒓 = 𝒃 −K

(
𝑼𝑘+1/3),

𝒓c = [𝑅𝑥Mat(𝒓)]𝑅⊤
𝑡 , 𝑼

𝑘+1/3
c =

[
𝑅𝑥Mat

(
𝑼𝑘+1/3)]𝑅⊤

𝑡 ,

Solve Kc
(
𝑼𝑘+2/3

c
)
= 𝒓c +Kc

(
𝑼𝑘+1/3

c
)
,

𝒆c = 𝑼𝑘+2/3
c −𝑼𝑘+1/3

c , 𝒆 = [𝑃𝑥Mat(𝒆c)]𝑃⊤
𝑡 ,

𝑼𝑘+2/3 = 𝑼𝑘+1/3 + Vec(𝒆),
𝑼𝑘+1 = Snon,𝜂

(
𝒃,𝑼𝑘+2/3, 𝑠2

)
.

(4.44)

In Figure 4.22 we show the measured error of this two-level STMG method for
Burgers’ equation (2.6) with conditions. We use two values of the diffusion para-
meter 𝜈, and we see that the convergence is heavily dependent on this parameter:
with enough diffusion, STMG works very well in the nonlinear setting too, whereas
when the diffusion gets smaller, the convergence of STMG deteriorates, as in the
linear case. Here, we used 𝜂 = 1

4 for the damping parameter, which was found to
be the best choice in our numerical experiments.
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Figure 4.22. Measured error of STMG with two block Jacob smoothing steps for
Burgers’ equation.

For parabolic problems, STMG presented in this section stands out as by far
the most effective time-parallel solver currently available, but it is intrusive in
nature, unlike the Parareal algorithm. However, when dealing with hyperbolic
problems, as shown in Figures 4.20 and 4.22, STMG appears to be less efficient,
indicating that additional efforts are required in this domain. Furthermore, as
highlighted in Figure 4.21(a), even for parabolic problems the convergence rate of
STMG depends on the time-integrator used, and this dependence merits further
investigation as well.

5. Conclusions
In this paper we have explained the important differences for time-parallel time
integration, or PinT (parallel-in-time) methods, when applied to hyperbolic or
parabolic problems. For parabolic problems, which tend to forget a lot of inform-
ation in time and thus have solutions that are local in time, there are many very
effective PinT techniques, such as Parareal, space–time multigrid (STMG), Para-
Exp and ParaDiag, and waveform relaxation (WR) techniques based on domain
decomposition (DD). For hyperbolic problems, which retain very fine solution
features over very long times, only some of these techniques are effective, such
as ParaExp, ParaDiag and Schwarz waveform relaxation (SWR), especially in re-
lation to tent pitching. For more information see the recent research monograph
by Gander and Lunet (2024), which contains an up-to-date treatment of PinT
methods, giving for each one the historical content, a simple but complete and
self-contained convergence analysis, and also short MATLAB codes that can be
directly executed. Codes used to produce the results in this paper are available
from https://github.com/wushulin/ActaPinT.
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