Abstract
We begin with a short review of the 2-D continuous wavelet transform (CWT) and describe a number of physical applications. Then we discuss briefly the mathematical background, namely coherent states derived from group representations, and we show how it allows a straightforward extension to more general situations, such as higher dimensions, wavelets on the sphere or time-dependent wavelets. We conclude with a short outline of the 2- D discrete wavelet transform, some generalizations and a few physical applications.
Introduction
As we have seen in Chapter 1, both the continuous wavelet transform (CWT) and the discrete wavelet transform (DWT) may be extended to two dimensions. Here also, many applications have been developed, in various branches of physics and in image processing. As in the 1-D case, the CWT is better adapted to analysis, for instance the detection of specific features in an image. This is true, in particular, for oriented features, if one uses a wavelet which is directionally selective. On the other hand, the strong point of the DWT is data compression, notably in transmitting or reconstructing a 2-D signal after processing (e.g. denoising).
We will spend most of the present chapter discussing the 2-D CWT, for two reasons. First, it admits a number of interesting physical applications, that we will describe in Section 2.3. The second motivation is that its mathematical background, namely group representation theory (Section 2.4), suggests a straightforward extension to more general situations, such as wavelets in higher dimensions, or on manifolds (a sphere, for instance), or time- dependent wavelets, a promising tool for motion tracking (Section 2.5).