We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter introduces stochastic gradient MCMC (SG-MCMC) algorithms, designed to scale Bayesian inference to large datasets. Beginning with the unadjusted Langevin algorithm (ULA), it extends to more sophisticated methods such as stochastic gradient Langevin dynamics (SGLD). The chapter emphasises controlling the stochasticity in gradient estimators and explores the role of control variates in reducing variance. Convergence properties of SG-MCMC methods are analysed, with experiments demonstrating their performance in logistic regression and Bayesian neural networks. It concludes by outlining a general framework for SG-MCMC and offering practical guidance for efficient, scalable Bayesian learning.
Covering formulation, algorithms and structural results and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. In light of major advances in machine learning over the past decade, this edition includes a new Part V on inverse reinforcement learning as well as a new chapter on non-parametric Bayesian inference (for Dirichlet processes and Gaussian processes), variational Bayes and conformal prediction.
A graduate-level introduction to advanced topics in Markov chain Monte Carlo (MCMC), as applied broadly in the Bayesian computational context. The topics covered have emerged as recently as the last decade and include stochastic gradient MCMC, non-reversible MCMC, continuous time MCMC, and new techniques for convergence assessment. A particular focus is on cutting-edge methods that are scalable with respect to either the amount of data, or the data dimension, motivated by the emerging high-priority application areas in machine learning and AI. Examples are woven throughout the text to demonstrate how scalable Bayesian learning methods can be implemented. This text could form the basis for a course and is sure to be an invaluable resource for researchers in the field.
Complex networks are key to describing the connected nature of the society that we live in. This book, the second of two volumes, describes the local structure of random graph models for real-world networks and determines when these models have a giant component and when they are small-, and ultra-small, worlds. This is the first book to cover the theory and implications of local convergence, a crucial technique in the analysis of sparse random graphs. Suitable as a resource for researchers and PhD-level courses, it uses examples of real-world networks, such as the Internet and citation networks, as motivation for the models that are discussed, and includes exercises at the end of each chapter to develop intuition. The book closes with an extensive discussion of related models and problems that demonstratemodern approaches to network theory, such as community structure and directed models.
In this chapter we investigate graph distances in preferential attachment models. We focus on typical distances as well as the diameter of preferential attachment models. We again rely on path-counting techniques, as well as local limit results. Since the local limit is a rather involved quantity, some parts of our analysis are considerably harder than those in Chapters 6 and 7.
In this chapter we investigate the distance structure of the configuration model by investigating its typical distances and its diameter. We adapt the path-counting techniques in Chapter 6 to the configuration model, and obtain typical distances from the “giant is almost local” proof. To understand the ultra-small distances for infinite-variance degree configuration models, we investigate the generation growth of infinite-mean branching processes. The relation to branching processes informally leads to the power-iteration technique that allows one to deduce typical distance results in random graphs in a relatively straightforward way.