To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subset Y of the general linear group $\text{GL}(n,q)$ is called t-intersecting if $\text{rk}(x-y)\le n-t$ for all $x,y\in Y$, or equivalently x and y agree pointwise on a t-dimensional subspace of $\mathbb{F}_q^n$ for all $x,y\in Y$. We show that, if n is sufficiently large compared to t, the size of every such t-intersecting set is at most that of the stabiliser of a basis of a t-dimensional subspace of $\mathbb{F}_q^n$. In case of equality, the characteristic vector of Y is a linear combination of the characteristic vectors of the cosets of these stabilisers. We also give similar results for subsets of $\text{GL}(n,q)$ that intersect not necessarily pointwise in t-dimensional subspaces of $\mathbb{F}_q^n$ and for cross-intersecting subsets of $\text{GL}(n,q)$. These results may be viewed as variants of the classical Erdős–Ko–Rado Theorem in extremal set theory and are q-analogs of corresponding results known for the symmetric group. Our methods are based on eigenvalue techniques to estimate the size of the largest independent sets in graphs and crucially involve the representation theory of $\text{GL}(n,q)$.