To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Earth Gravity Model 2008 (EGM2008) is now some years old, and yet information on how to use it to calculate Earth's gravity remains obscure outside the field of geodesy. We describe the mathematics necessary to implement EGM2008, and use this to discuss several points of the model: its sensitivity to the number of spherical harmonics being summed, nuances and a trap for physicists and mathematicians in the normalisation it uses, and a comparison with other work. We conclude that one must not overestimate the precision shown by a global-fit model such as EGM2008.
Integrated navigation systems made up of a strap-down inertial navigation system (SINS) and global positioning system (GPS) are increasingly being used to improve the position, speed, and attitude information of unmanned surface vessels (USV). However, a GPS outage could occur due to the dependence of GPS performance on the external environment and the number of available satellites. This study uses an innovative combination of Dempster–Shafer (DS) theory and broad learning (BL) method to design a SINS/GPS integrated navigation system. First, the velocity and position information derived from the SINS and their corresponding GPS were fused using DS fusion rules, while the SINS error was modelled using the BL method. A ‘virtual’ GPS was then designed using the proposed DS–BL approach to provide the speed and position information when the GPS signal was interrupted, thereby ensuring the continuous navigation of the USV. The results of both simulation and sea trial demonstrate that the proposed virtual GPS estimation approach is effective, and the navigational accuracy of the proposed method is superior to other methods.
E-navigation provides the opportunity to apply modern digital and other electronic enhancements to improve the safety and efficiency of maritime navigation. Under the broad banner of e-navigation, the International Hydrographic Organization's S-100 product specification framework is facilitating the establishment of a standard maritime data structure to enable a free-flowing exchange of navigation information between ships, ship-to-shore and shore-to-ship. There are currently over 30 S-100 based product specifications at various stages of development. For the data standard to be properly used, navigation software products must be capable of reading as well as comprehending the data format and content. To develop robust and stable software, the S-100 data models and product specifications must be consistent, accurate and interoperable in conveying various types of information. This paper describes the results of research on S-100 based product specifications from the viewpoint of developing maritime navigation software. In particular, issues related to software development for Electronic Chart Display Information System (ECDIS) and Vessel Traffic Service (VTS) are discussed, including appropriate data model analysis, processing of features, and symbols overlapping with other product specifications. Proposed solutions for some identified issues are presented.
If the Earth's oblateness is neglected in marine navigation, then the sphere gives a relatively simple solution for course and distance between any two points. The navigation sphere where a span of one minute of arc is equal to nautical mile is used. The primary deficiency of this approach is the lack of a closed-form formula that takes the Earth's eccentricity into account. Considering the Earth as an oblate spheroid, i.e., a rotational ellipsoid with a small flattening, the problem of computing the length of the meridian arc leads to the understanding of elliptic integrals. In this paper, incomplete elliptic integrals of the first, second and third kind are used to find an arbitrary elliptical arc. The results prove an advantage of using geocentric latitude compared to geodetic and reduced latitude.
Maritime navigation is a complex task involving the acquisition, analysis, and interpretation of information using seamanship, professional knowledge, and technology. As the maritime industry transitions towards maritime autonomous surface ships (MASS), there is an increasing gap between the operator and the technology. This paper explores a collision avoidance decision support system for navigation from the navigator's perspective. The system, developed by Wärtsilä, is called Advanced Intelligent Manoeuvring (AIM) and can generate suggestions for course or speed alterations based on data from surrounding traffic. Nineteen Swedish navigators completed three ship traffic scenarios with and without decision support. Qualitative data were collected using interviews and analysed with thematic analysis. The results show that the participants perceive the decision support system as an advisory tool to visualise how traffic situations could unfold, a task currently difficult for most navigators. This paper discusses the present and near future of maritime navigation, highlighting the benefits of automation, while remaining vigilant about the potential dangers.
For G a profinite group, we construct an equivalence between rational G-Mackey functors and a certain full subcategory of G-sheaves over the space of closed subgroups of G called Weyl-G-sheaves. This subcategory consists of those sheaves whose stalk over a subgroup K is K-fixed.
This extends the classification of rational G-Mackey functors for finite G of Thévenaz and Webb, and Greenlees and May to a new class of examples. Moreover, this equivalence is instrumental in the classification of rational G-spectra for profinite G, as given in the second author’s thesis.
Benefiting from video surveillance systems that provide real-time traffic conditions, automatic vessel detection has become an indispensable part of the maritime surveillance system. However, high-level vision tasks generally rely on high-quality images. Affected by the imaging environment, maritime images taken under poor lighting conditions easily suffer from heavy noise and colour distortion. Such degraded images may interfere with the analysis of maritime video by regulatory agencies, such as vessel detection, recognition and tracking. To improve the accuracy and robustness of detection accuracy, we propose a lightweight generative adversarial network (LGAN) to enhance maritime images under low-light conditions. The LGAN uses an attention mechanism to locally enhance low-light images and prevent overexposure. Both mixed loss functions and local discriminator are then adopted to reduce loss of detail and improve image quality. Meanwhile, to satisfy the demand for real-time enhancement of low-light maritime images, model compression strategy is exploited to enhance images efficiently while reducing the network parameters. Experiments on synthetic and realistic images indicate that the proposed LGAN can effectively enhance low-light images with better preservation of detail and visual quality than other competing methods.