To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Within the contents of this book we have attempted to elucidate the essential features of Monte Carlo simulations and their application to problems in statistical physics. We have attempted to give the reader practical advice as well as to present theoretically based background for the methodology of the simulations as well as the tools of analysis. New Monte Carlo methods will be devised and will be used with more powerful computers, but we believe that the advice given to the reader in Section 4.8 will remain valid.
In general terms we can expect that progress in Monte Carlo studies in the future will take place along two different routes. First, there will be a continued advancement towards ultra high resolution studies of relatively simple models in which critical temperatures and exponents, phase boundaries, etc., will be examined with increasing precision and accuracy. As a consequence, high numerical resolution as well as the physical interpretation of simulational results may well provide hints to the theorist who is interested in analytic investigation. On the other hand, we expect that there will be a tendency to increase the examination of much more complicated models which provide a better approximation to physical materials. As the general area of materials science blossoms, we anticipate that Monte Carlo methods will be used to probe the often complex behavior of real materials. This is a challenge indeed, since there are usually phenomena which are occurring at different length and time scales.
In the preceding chapters we described the application of Monte Carlo methods in numerous areas that can be clearly identified as belonging to physics. Although the exposition was far from complete, it should have sufficed to give the reader an appreciation of the broad impact that Monte Carlo studies has already had in statistical physics. A more recent occurrence is the application of these methods in non-traditional areas of physics related research. More explicitly, we mean subject areas that are not normally considered to be physics at all but which make use of physics principles at their core. In some cases physicists have entered these arenas by introducing quite simplified models that represent a ‘physicist's view’ of a particular problem. Often such descriptions are oversimplified, but the hope is that some essential insight can be gained as is the case in many traditional physics studies. (A recent, provocative perspective of the role of statistical physics outside of physics has been presented by Stauffer (2004).) In other cases, however, Monte Carlo methods are being applied by non-physicists (or ‘recent physicists’) to problems that, at best, have a tenuous relationship to physics. This chapter is to serve as a brief glimpse of applications of Monte Carlo methods ‘outside’ of physics. The number of such studies will surely grow rapidly; and even now, we wish to emphasize that we will make no attempt to be complete in our treatment.
Modern Monte Carlo methods have their roots in the 1940s when Fermi, Ulam, von Neumann, Metropolis and others began considering the use of random numbers to examine different problems in physics from a stochastic perspective (Cooper (1989); this set of biographical articles about S. Ulam provides fascinating insight into the early development of the Monte Carlo method, even before the advent of the modern computer). Very simple Monte Carlo methods were devised to provide a means to estimate answers to analytically intractable problems. Much of this work is unpublished and a view of the origins of Monte Carlo methods can best be obtained through examination of published correspondence and historical narratives. Although many of the topics which will be covered in this book deal with more complex Monte Carlo methods which are tailored explicitly for use in statistical physics, many of the early, simple techniques retain their importance because of the dramatic increase in accessible computing power which has taken place during the last two decades. In the remainder of this chapter we shall consider the application of simple Monte Carlo methods to a broad spectrum of interesting problems.
COMPARISONS OF METHODS FOR NUMERICAL INTEGRATION OF GIVEN FUNCTIONS
Simple methods
One of the simplest and most effective uses for Monte Carlo methods is the evaluation of definite integrals which are intractable by analytic techniques. (See the book by Hammersley and Handscomb (1964) for more mathematical details.)
This book describes the statistical mechanics of classical spin systems with quenched disorder. The first part of the book covers the physics of spin-glass states using results obtained within the framework of the mean field theory of spin glasses. The technique of replica symmetry breaking is explained in detail, along with a discussion of the underlying physics. The second part is devoted to the theory of critical phenomena in the presence of weak quenched disorder. This includes a systematic derivation of the traditional renormalization group theory, which is then used to obtain a new 'random' critical regime in disordered vector ferromagnets and in the two-dimensional Ising model. The third part of the book describes other types of disordered systems, relating to new results at the frontiers of modern research. The book is suitable for graduate students and researchers in the field of statistical mechanics of disordered systems.
Many natural systems can be described as a collection of oscillators coupled to each other via an interaction matrix. Systems of this type describe phenomena as diverse as earthquakes, ecosystems, neurons, cardiac pacemaker cells, or animal and insect behavior. Coupled oscillators may display synchronized behavior, i.e. follow a common dynamical evolution. Famous examples include the synchronization of circadian rhythms and night/day alternation, crickets that chirp in unison, or flashing fireflies. An exhaustive list of examples and a detailed exposition of the synchronization behavior of periodic systems can be found in the book by Blekhman (1988) and the more recent reviews by Pikovsky, Rosenblum and Kurths (2001), and Boccaletti et al. (2002).
Synchronization properties are also dependent on the coupling pattern among the oscillators which is conveniently represented as an interaction network characterizing each system. Networks therefore assume a major role in the study of synchronization phenomena and, in this chapter, we intend to provide an overview of results addressing the effect of their structure and complexity on the behavior of the most widely used classes of models.
General framework
The central question in the study of coupled oscillators concerns the emergence of coherent behavior in which the elements of the system follow the same dynamical pattern, i.e. are synchronized. The first studies were concerned with the synchronization of periodic systems such as clocks or flashing fireflies.
Undeniably, the visualizations of the Internet or the airport network convey the notion of intricate, in some cases haphazard, systems of a very complicated nature. Complexity, however, is not the same as the addition of complicated features. Despite the fact that there is no unique and commonly accepted definition of complexity – it is indeed very unlikely to find two scientists sharing the same definition of complex system – we discuss from what perspectives many real-world networks can be considered as complex systems, and what are the peculiar features signaling this occurrence. In this chapter we review the basic topological and dynamical features that characterize real-world networks and we attempt to categorize networks into a few broad classes according to their observed statistical properties. In particular, self-organized dynamical evolution and the emergence of the small-world and scale-free properties of many networks are discussed as prominent concepts which have led to a paradigm shift in which the dynamics of networks have become a central issue in their characterization as well as in their modeling (which will be discussed in the next chapter). We do not aim, however, at an exhaustive exposition of the theory and modeling of complex networked structures since, as of today, there are reference textbooks on these topics such as those by Dorogovtsev and Mendes (2003), Pastor-Satorras and Vespignani (2004), and Caldarelli (2007), along with journal reviews by Albert and Barabási (2002), Dorogovtsev and Mendes (2002), Newman (2003c), and Boccaletti et al. ([2006]).
Statistical mechanics has long studied how microscopic interaction rules between the elements of a system at equilibrium are translated into its macroscopic properties. In particular, many efforts have been devoted to the understanding of the phase transition phenomenon: as an external parameter (for example the temperature) is varied, a change occurs in the macroscopic behavior of the system under study. For example, a liquid can be transformed into a solid or a gas when pressure or temperature are changed. Another important example of phase transition is by the appearance in various metallic materials of a macroscopic magnetization below a critical temperature. Such spontaneous manifestations of order have been widely studied and constitute an important paradigm of the emergence of global cooperative behavior from purely local rules.
In this chapter, we first recall some generalities and definitions concerning phase transitions and the emergence of cooperative phenomena. For this purpose we introduce the paradigmatic Ising model, which is a cornerstone of the statistical physics approach to complex systems and, as we will see in other chapters, is at the basis of several models used in contexts far from physics such as social sciences or epidemics. After a brief survey of the main properties of the Ising model, we show how the usual scenarios for the emergence of a global behavior are affected by the fact that the interactions between the microscopic elements define a complex network.
Although we have reviewed or mentioned more than 600 scientific works on equilibrium and non-equilibrium processes in complex networks, the present book is by no means intended as an exhaustive account of all research activities in network science. It would have been extremely easy to list more than twice as many scientific papers and, as we have stressed in several passages of this book, we have decided to focus our attention on that subset of network research that deals with dynamical processes in large-scale networks characterized by complex features such as largescale fluctuations and heterogeneities. This implies the selection of studies and approaches tailored to tackle the large-scale properties and asymptotic behavior of phenomena and, as a consequence, models that usually trade details and realism for generality and a high level of abstraction. This corresponds to a methodological approach that has its roots in statistical physics and has greatly contributed to generate an entire research area labeled in recent years as the “new science of networks” (Watts, 2004). As network science is an interdisciplinary endeavor, however, we do not want to overlook the criticisms raised by several authors to this “new science of networks” and to the statistical physics and complex systems approaches. These criticisms are articulated around several key points that are echoed in several commentaries and essays (see for instance Urry [2004], Keller [2005] and Mitzenmacher [2006]), and at the end of 12 long chapters we believe we are obliged to provide a discussion of some of these key points.
In this chapter we introduce the reader to the basic definitions of network and graph theory. We define metrics such as the shortest path length, the clustering coefficient, and the degree distribution, which provide a basic characterization of network systems. The large size of many networks makes statistical analysis the proper tool for a useful mathematical characterization of these systems. We therefore describe the many statistical quantities characterizing the structural and hierarchical ordering of networks including multipoint degree correlation functions, clustering spectrum, and several other local and non-local quantities, hierarchical measures and weighted properties.
This chapter will give the reader a crash course on the basic notions of network analysis which are prerequisites for understanding later chapters of the book. Needless to say the expert reader can freely skip this chapter and use it later as a reference if needed.
What is a network?
In very general terms a network is any system that admits an abstract mathematical representation as a graph whose nodes (vertices) identify the elements of the system and in which the set of connecting links (edges) represent the presence of a relation or interaction among those elements. Clearly such a high level of abstraction generally applies to a wide array of systems. In this sense, networks provide a theoretical framework that allows a convenient conceptual representation of interrelations in complex systems where the system level characterization implies the mapping of interactions among a large number of individuals.