We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This collection of quantum mechanics problems has grown out of many years of teaching the subject to undergraduate and graduate students. It is addressed to both student and teacher and is intended to be used as an auxiliary tool in class or in self-study. The emphasis is on stressing the principles, physical concepts and methods rather than supplying information for immediate use. The problems have been designed primarily for their educational value but they are also used to point out certain properties and concepts worthy of interest; an additional aim is to condition the student to the atmosphere of change that will be encountered in the course of a career. They are usually long and consist of a number of related questions around a central theme. Solutions are presented in sufficient detail to enable the reader to follow every step. The degree of difficulty presented by the problems varies. This approach requires an investment of time, effort and concentration by the student and aims at making him or her fit to deal with analogous problems in different situations. Although problems and exercises are without exception useful, a collection of solved problems can be truly advantageous to the prospective student only if it is treated as a learning tool towards mastering ways of thinking and techniques to be used in addressing new problems rather than a solutions manual. The problems cover most of the subjects that are traditionally covered in undergraduate and graduate courses.
In the last chapter we saw how the measurement problem in quantum theory arises when we try to treat the measurement apparatus as a quantum system. We need more apparatus to measure which state the first apparatus is in, and we have a measurement chain that seems to go on indefinitely. There is, however, one place where this apparently infinite sequence certainly seems to end and that is when the information reaches us. We know from experience that when we look at the photon detector we see that either it has recorded the passage of a photon or it hasn't. When we open the box and look at the cat either it is dead or it is alive; we never see it in the state of suspended animation that quantum physics alleges it should be in until its state is measured. It might follow, therefore, that human beings should be looked on as the ultimate measuring apparatus. If so, what aspect of human beings is it that gives them this apparently unique quality? It is this question and its implications that form the subject of the present chapter.
Let us examine more closely what goes on when a human being observes the quantum state of a system. We return to the set-up described in the last chapter, where a 45° photon passes through a polarisation analyser that moves a pointer to one of two positions (H or V) depending on whether the photon is horizontally or vertically polarised.
In the last chapter, we considered the possibility that an object such as the pointer of an apparatus designed to measure H/V polarisation (see Figure 7.1) might in principle be forbidden from being in a quantum superposition if it was large enough. A microscopic system, such as a photon polarised at 45° to the horizontal, would then collapse into an h or a ν state as a consequence of such a measurement. To test this idea, we considered how we might detect a macroscopic object in such a superposition and we found that this was very difficult to do. The oscillating pointer of Figure 7.1 is very sensitive to random thermal disturbances and as a result is almost certainly going to swing in one direction or the other, rather than being in a superposition of both. Macroscopic superpositions have indeed been observed in SQUIDs (see the last section in Chapter 7), but only after great care has been taken to eliminate similar thermal effects.
In the context of the last chapter, the randomness associated with thermal motion was considered as a nuisance to be eliminated, but might it instead be just what we are looking for? Perhaps it is not that thermal effects prevent us observing quantum superpositions, but rather that such states are impossible in principle when thermal disturbances are present. This could provide another way out of the measurement problem.
Irreversibility, strengthened by the idea of strong mixing, has been discussed in the last two chapters. We reached the conclusion that, once such processes have been involved in a quantum measurement, it is in practice impossible to perform an interference experiment that would demonstrate the continued existence of a superposition. It is then ‘safe’ to assume that the system has ‘really’ collapsed into a state corresponding to one of the possible measurement outcomes. Does this mean that the measurement problem has been solved? Clearly it has for all practical purposes, as has been pointed out several times in earlier chapters. But it may still not be sufficient to provide a completely satisfactory solution in principle: in particular, we note that we have still not properly addressed the question of actualisation outlined at the end of the first section of Chapter 8.
In the present chapter we discuss an interpretation of quantum physics that was developed during the last 15 or so years of the twentieth century and is based on the idea of describing quantum processes in terms of ‘consistent histories’. As we shall see, the resulting theory has much in common with the Copenhagen interpretation discussed in Chapter 4 and when applied to measurement it connects with the viewpoint, discussed in the last chapter, in which irreversible processes are to be taken as the primary reality.
We begin with a short discussion of the meaning and purpose of a scientific theory.
Quantum physics is the theory that underlies nearly all our current understanding of the physical universe. Since its invention some sixty years ago the scope of quantum theory has expanded to the point where the behaviour of subatomic particles, the properties of the atomic nucleus and the structure and properties of molecules and solids are all successfully described in quantum terms. Yet, ever since its beginning, quantum theory has been haunted by conceptual and philosophical problems which have made it hard to understand and difficult to accept.
As a student of physics some twenty-five years ago, one of the prime fascinations of the subject to me was the great conceptual leap quantum physics required us to make from our conventional ways of thinking about the physical world. As students we puzzled over this, encouraged to some extent by our teachers who were nevertheless more concerned to train us how to apply quantum ideas to the understanding of physical phenomena. At that time it was difficult to find books on the conceptual aspects of the subject – or at least any that discussed the problems in a reasonably accessible way. Some twenty years later when I had the opportunity of teaching quantum mechanics to undergraduate students, I tried to include some references to the conceptual aspects of the subject and, although there was by then a quite extensive literature, much of this was still rather technical and difficult for the non-specialist.
‘God’, said Albert Einstein, ‘does not play dice’. This famous remark by the author of the theory of relativity was not intended as an analysis of the recreational habits of a supreme being but expressed his reaction to the new scientific ideas, developed in the first quarter of the twentieth century, which are now known as quantum physics. Before we can fully appreciate why one of the greatest scientists of modern times should have been led to make such a comment, we must first try to understand the context of scientific and philosophical thought that had become established by the end of the nineteenth century and what it was about the ‘new physics’ that presented such a radical challenge to this consensus.
What is often thought of as the modern scientific age began in the sixteenth century, when Nicholas Copernicus proposed that the motion of the stars and planets should be described on the assumption that it is the sun, rather than the earth, which is the centre of the solar system. The opposition, not to say persecution, that this idea encountered from the establishment of that time is well known, but this was unable to prevent a revolution in thinking whose influence has continued to the present day. From that time on, the accepted test of scientific truth has increasingly been observation and experiment rather than religious or philosophical dogma.
The 1935 paper by Einstein, Podolski and Rosen represented the culmination of a long debate that had begun soon after quantum theory was developed in the 1920s. One of the main protagonists in this discussion was Niels Bohr, a Danish physicist who worked in Copenhagen until, like so many other European scientists of his time, he became a refugee in the face of the German invasion during the Second World War. As we shall see, Bohr's views differed strongly from those of Einstein and his co-workers on a number of fundamental issues, but it was his approach to the fundamental problems of quantum physics that eventually gained general, though not universal, acceptance. Because much of Bohr's work was done in that city, his ideas and those developed from them have become known as the ‘Copenhagen interpretation’. In this chapter we shall discuss the main ideas of this approach. We shall try to appreciate its strengths as well as attempting to understand why some believe that there are important questions left unanswered.
When Einstein said that ‘God does not play dice’, Bohr is said to have replied ‘Don't tell God what to do!’ The historical accuracy of this exchange may be in doubt, but it encapsulates the differences in approach of the two men. Whereas Einstein approached quantum physics with doubts, and sought to reveal its incompleteness by demonstrating its lack of consistency with our everyday ways of thinking about the physical universe, Bohr's approach was to accept the quantum ideas and to explore their consequences for our everyday ways of thinking.