To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Wavelength division multiplexing (WDM) is the second major fiber–optic revolution in the field of telecommunications. WDM is a technology which combines many different segments of wavelength range, called different independent optical channels, into the same optical fiber. The best feature of an optical fiber is that it has a wide spectral region which ranges from 1260 nm to 1675 nm. The light source used in high-capacity optical fiber communication systems emits a narrow wavelength band of less than 1 nm, thus enabling simultaneous transmission of many optical channels using the same optical fiber. WDM allows a huge increase in capacity of an optical fiber as compared to point-to-point link that carries only a single optical channel. Another big advantage of WDM is that different transmission formats can be supported by various optical channels. It means that without the need of common signal format, any data rate can be transmitted simultaneously and independently using the common optical fiber.
This chapter focuses on WDM concepts and components used in high-capacity optic–fiber communication networks. The discussion begins with the principle of wavelength division multiplexing which contains an orthogonal set of optical carriers with a suitable guard band, which a single-mode fiber can propagate. This is followed by a brief discussion on WDM system configuration involving a number of optical devices. An account of applications of WDM systems is presented next. The discussion is carried forward by describing various types of WDM components, including transmitters and receivers. Finally, an analysis of system performance issues and WDM soliton systems are covered.
Principle of Wavelength Division Multiplexing
Wavelength division multiplexing (WDM) is based on the fundamental physical principle which states that many optical rays having different wavelengths can be propagated together over a common optical channel with no interference. The concept of WDM is analogous to the basic concept of frequency division multiplexing (FDM) in which the available bandwidth of a communications channel in its frequency domain is divided into multiple sub-bands (called user channels). It implies that each user channel occupies only a part of the wide frequency spectrum. In WDM, each user channel is recognized by an optical wavelength. Remember the relationship between the wavelength and frequency as, which implies that shorter the wavelength of the signal, higher will be its frequency, and vice-versa.
Optical measurements are necessary to verify the operational characteristics of the optical fiber communication link. Various measurement techniques and special-purpose test equipments are employed for determining key performance parameters of the constituent components and devices including the optical fiber. It is quite obvious that optical measurements are needed at different levels of research and design, manufacturing and production of optical components and devices, installation and commissioning of optical fiber communication systems in the field. There is wide variety of optical measurement and test equipments used. These include optical power meter, optical oscilloscope and spectrum analyzer, optical time-domain reflectometer (OTDR), optical waveform analyzer, connector inspection microscope, dispersion analyzer, live fiber detector, talk-set, optical test set (combined source and power meter), etc. All these measurements are wavelength specific. Fiber attenuation and occurrence of faults in the optical fiber link is the main concern in ensuring the desired performance. There are several challenges involved with optical measurements like multiple wavelengths/channels, high optical power levels, need to carry tests remotely along with a high degree of automation.
Optical power and insertion loss measurements are among the easiest yet the most important optical measurements in optical fiber communications. An OTDR has several uses such as loss measurements as well as fault detection. Live fiber detectors and talk-sets are useful portable test equipment for the purpose of installation, maintenance and repair. Software prediction of an OTDR trace is a recent development in optical measurements. This chapter focuses on optical measurements of transmission properties of major constituents of optical fiber communication system such as optical source power output, optical amplifier noise characteristics, modulation response, insertion loss, fiber attenuation, dispersion parameters, and link fault detection.
Requirements of Optical Fiber Measurements
Optical fiber communication systems are evolving with innovations and numerous applications. Existing copper cables are being replaced with optical fibers everywhere in all accessible areas.