To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chemical reactor is the heart of most industrial processes, although the reactor may represent only about 10 percent of the total capital cost; this is because the output from the reactor defines everything else that must be done downstream, particularly the separation processes. Similarly, if we wish to think about cellular rather than industrial processes, it is the chemical reactions that enable the cell or the organ to carry out its essential functions. We saw in Chapters 7 through 9 how a chemical reactor is integrated into simple processes, and we explored economic issues such as the trade-off between capital and operating costs. That discussion was limited, however, because we assumed in every case that the rate constants were fixed numbers. In doing so, we ignored one of the “handles” that the chemical engineer – or, in the case of an organism, evolution – has available to promote efficiency. Chemical reaction rates are highly temperature dependent, and precise temperature control can be critical in both the design and functioning of a reactor.
Chemical reaction engineering is a broad subject, and it typically occupies at least one full course in an undergraduate chemical engineering curriculum. We introduce some basic ideas here for completeness, but we are only touching on one of the foundations of the chemical engineering profession. We restrict ourselves throughout this chapter to liquid systems, as before, in order to simplify some of the analysis while retaining the essential features, and we address only well-mixed reactor configurations.
Engineering is ultimately about making things for the benefit of society. We typically use the term design for the set of instructions by which a craftsperson can turn an idea into an object, and that meaning of the word carries over to the engineering activity of making tangible objects. Design has an additional meaning for a chemical engineer, however; it is the conceptualization of a process for manufacturing something – a chemical, perhaps. In this use of the word we address the problem of designing what pieces of equipment are needed, how they should be connected, how large they should be, and so on, but we do not address the question of how the equipment should be manufactured – materials of construction, locations of welds, precise geometry, and so forth. It is the second sense of the word that we employ in this chapter. Thus, we will exploit the understanding of reaction kinetics developed in Chapter 6 to determine reactor sizes and material flow rates, but we will view the reactor simply as a vessel of a given size, with no attention to the detail that would be required for actual fabrication.
Process design is a subject that is traditionally taught as a capstone course during the last year of a chemical engineering program, because a complete approach to process design obviously requires a broad base of understanding of chemical engineering fundamentals.
Most chemical engineering applications involve chemical reactions; this is true whether we are dealing with the manufacture of computer chips, the creation of scaffolding for cell growth in artificial organs, the design of a novel battery, or the conversion of biomass to synthetic fuel. Chemical reactions can take place in gas, liquid, or solid phases; in the bulk or at interfaces; and with or without catalysts. Many reactions of social, physiological, or industrial significance take place in multiphase environments, where reactive species and reaction products must cross phase boundaries. Some “cracking” reactions for the production of intermediate molecular weight hydrocarbons from heavy components of crude oil, for example, are carried out in “trickle-bed” reactors; here, liquid and gas phases flow together over a bed of catalyst particles. Design and operating considerations for trickle-bed reactors include ensuring the necessary contact between the phases so that chemical species can get to where they need to be for specific reactions to occur. Similarly, many biochemical reactions, including wastewater treatment, require that suspended microorganisms be able to access organic nutrients that are dissolved in the liquid phase, as well as oxygen that is supplied as a gas (perhaps in air) and must dissolve into the liquid.
The design and operating issues for complex reactors of the types mentioned here are addressed in advanced courses, but we can focus on some basic principles essential to our overall understanding that can be elucidated by considering single-phase reactors and simple geometries; many important reactions are, in fact, carried out in a single phase in relatively simple geometries.
The implementation of a great many processes depends ultimately on the ability to separate various species from one another. In this chapter we will build on the basic principles of interphasemass transfer developed in Chapter 10 to explore some of the ideas involved in the design of a separation process. The essential component of the analysis is the equilibrium stage defined in Section 10.4.1. The design problem can be roughly broken down into the actual mechanical implementation of an equilibrium stage and the computation of the number of equilibrium stages needed to effect a desired degree of separation. We shall deal only with the latter; the former remains very much an art and beyond the scope of this introductory text. For simplicity we will restrict this chapter to separation by liquid-liquid extraction. The overall approach and the solution techniques have much greater generality and are applicable to nearly all separation processes, phase-change and nonphase-change alike.
Liquid-liquid extraction is a process in which a solute is transferred between two solvents. We will assume that the two solvents are absolutely immiscible in one another; this is a convenient approximation, although only sometimes realistic. It is traditional to do separation process calculations using mass fractions instead of concentrations. We shall follow this practice, and Section 11.2 is devoted to reformulating the description of an equilibrium stage in terms of mass fractions.
Equilibrium Stage
A mass transfer stage for extraction is shown in Figure 11.1. The two phases with dissolved solute A are fed to a well-stirred contactor, where the agitation is designed to create a large interfacial area and transfer of A across the interface occurs.
As noted in the first chapter, chemical engineering is a broad profession that is critical to addressing many of the issues facing modern society. The intent of this text has been to provide a fundamental understanding of the elements of chemical engineering and to provide a flavor of the challenges that a chemical engineer might face; the quantitative skills developed here are generalizable to problems of far greater complexity than those addressed in this introductory text. There is much more to come to complete a basic chemical engineering education; the core will normally include courses that cover thermodynamics, fluid mechanics, mass transfer, heat transfer, separations, and reactor analysis in depth, as well as a capstone course in design. Other courses in the curriculum will depend on the institution, but will include some selection of advanced courses in chemistry, materials, biology, and mathematics.
Most educational institutions offer undergraduate students an opportunity to do research, and this experience is invaluable for obtaining real insight into the scope of the profession – it is a truism that the research that chemical engineers do is rarely reflected in the courses in the undergraduate curriculum because of time limitations in a four-year professional program, and it is in the research laboratory that an undergraduate student is most likely to see the exciting topics in materials development, synthetic biology, nanotechnology, and so forth that were mentioned in Chapter 1, as well as to experience the intellectual excitement that comes with addressing real open-ended problems.
Up to this point we have addressed physical situations for which mass is the only fundamental dependent variable, and by doing so we have been able to explore a wide range of chemical engineering applications. We have made some implicit assumptions about momentum and energy transport in doing so, however. When we assumed that vessels were perfectly mixed, with a consequent uniform concentration, we did not ask about the nature of mechanical agitation necessary to effect perfect mixing; to have done so would have required incorporation of momentum as a fundamental variable. Similarly, when we assumed that chemical reactors could be operated at a specified temperature and pressure, we did not consider the means by which temperature and pressure control could be effected, nor did we consider the possible impact of temperature transients or of the compressibility of a gas phase; to have done so would have required incorporation of energy as a fundamental variable.
Momentum transport is usually addressed in the chemical engineering curriculum in a course called Fluid Mechanics, or in the first part of a Transport Phenomena sequence. Energy is the subject of courses in Thermodynamics and Heat Transfer, where the latter may be incorporated in a subsequent part of a Transport Phenomena sequence, but an introduction to energy balances is often included in the first course for which this text is intended. We will therefore touch on energetics in order to illustrate the issues involved in incorporation of energy as a fundamental variable.
Most processes, both physicochemical and biological, involve one or more separation process. Human physiology, for example, requires the transfer of oxygen from air in the lungs to the blood stream, and the simultaneous transfer of CO2 from the blood stream to the lungs for removal. The function of the kidney is to process a continuous flow of liquid in order to separate waste products for removal from the body. The production of ethanol by the fermentation of sugars produced from natural products, whether for energy applications or for whiskey, requires that the ethanol be separated from an aqueous stream in which ethanol comprises less than 20 percent. The manufacture of polyethylene terephthalate for textile fibers requires the removal of ethylene glycol that is produced during the condensation polymerization process. A DNA analysis requires the separation of DNA fragments with different lengths and base pairs by gel electrophoresis. The production of oxygen for industrial or medical applications requires that the oxygen be separated from an air stream.
There are a variety of separation methodologies, and the analysis of separation processes has historically held a prominent place in the chemical engineering curriculum. Some, such as distillation and extraction, are familiar. (Brewing coffee or tea is an extraction process that is carried out on a very small scale.) Most physiological separations are membrane processes, in which a thin membrane keeps fluid (liquid or gas) streams apart while permitting certain species to move across the membrane.
The problems studied in Chapter 2 illustrate the use of the overall mass balance. Most chemical engineering applications, whether in biotechnology, chemical or materials processing, or environmental control, involve a number of distinct mass species that might or might not react chemically with one another. In this chapter we will consider mass balances for multicomponent systems in which there is a single phase (i.e., we exclude immiscible oil-water systems, solid-liquid suspensions, etc.) and the component species are nonreactive. With this foundation we can go on to the far more interesting and relevant reactive and multiphase systems in subsequent chapters.
Well-Stirred Systems
We consider again the flow system shown in Figure 2.4, but we now presume that there are two components; for specificity we will take these to be dissolved table salt (NaCl) and water, but they could be any two completely miscible, nonreacting materials. The flow diagram is shown in Figure 4.1, where to each stream we associate a density and concentration. The concentration of the salt, in mass units (e.g., kg/m3), is denoted c, while subscripts f and e again denote feed and effluent streams, respectively. Only one mass concentration, together with the density, is required to define this binary system, since the mass concentration of water is simply ρ – c (total mass/unit volume less mass of salt/unit volume). Salt concentrations are easily measured; the most elementary way is to evaporate the water from a known volume and weigh the residual salt, but a better way is to measure the electrical conductivity, which can easily be correlated with the ionic concentration.
Most systems of interest to chemical engineers are multicomponent, and a bit of reflection tells us that the internal energy of a multicomponent system must depend on the composition as well as on the temperature and pressure. We know, for example, that the temperature increases without adding any heat when sulfuric acid and water at the same temperature are mixed together. Writing energy balances for multicomponent systems is straightforward, but it is delicate and requires a bit of care. The engineering literature, including textbooks and basic handbooks, abounds with incorrect energy balances, often because of unwarranted shortcuts. I have published a brief catalog of incorrect energy balances elsewhere. Perhaps the most unsettling example on that list is a computer program offered for sale by a leading corporation to model a chemical reactor for converting coal to CO and H2. The most important consideration in operating such a reactor is getting the location and magnitude of the highest temperature (the hot spot) right, because too high a temperature or an incorrect location will affect the structural integrity of the reactor. The model predicted steady-state and transient profiles of solid- and gas-phase temperatures, coal conversion, and the concentrations of many gaseous species, but it contained an error that guaranteed that the hot spot would be computed incorrectly!
“Chemical engineering is the field of applied science that employs physical, chemical, and biochemical rate processes for the betterment of humanity.” This opening sentence of Chapter 1 has been the underlying paradigm of chemical engineering for at least a century, through the development of modern chemical and petrochemical, biochemical, and materials processing, and into the twenty-first century as chemical engineers have applied their skills to fundamental problems in pharmaceuticals, medical devices and drug-delivery systems, semiconductor manufacturing, nanoscale technology, renewable energy, environmental control, and so on. The role of the introductory course in chemical engineering is to develop a framework that enables the student to move effortlessly from basic science and mathematics courses into the engineering science and technology courses that form the core of a professional chemical engineering education, as well as to provide the student with a comprehensive overview of the scope and practice of the profession. An effective introductory course should therefore be constructed around the utilization of rate processes in a context that relates to actual practice.
Chemical engineering as an academic discipline has always suffered from the fact that the things that chemical engineers do as professionals are not easily demonstrated in a way that conveys understanding to the general public, or even to engineering students who are just starting to pursue their technical courses. (Every secondary school student can relate to robots, bridges, computers, or heart-lung machines, but how do you easily convey the beauty and societal importance of an optimally designed pharmaceutical process or the exponential cost of improved separation?)
Chemical engineering design, operation, and discovery generally require the analysis of complex physicochemical processes. The quantitative treatment of such systems is frequently called modeling, which is a process by which we employ the principles of chemistry, biochemistry, and physics to obtain mathematical equations describing the process. These equations can then be manipulated to predict what will happen under given circumstances. Thus, if it is a chemical reactor that we are modeling, we will know, for example, the effect on the final product of changing the temperature at which the reactor operates. If it is an artificial kidney that we are modeling, we will know the time required for treatment in terms of the flow rate of the dialysis fluid. The analysis process is straightforward and systematic. In this chapter we will examine the approach, see how a model of one simple process unit can be obtained and applied, and get a preview of the things to look for in more complex situations.
The Analysis Process
The specific goals of analysis are as follows:
Describe the physical situation through equations (obtain the model).
Use the model equations to predict behavior.
Compare the prediction with the actual behavior of the real system.
Evaluate the limitations of the model, and revise if necessary.
Use the model for prediction and design.
The logical sequence of the analysis process is shown in Figure 2.1. This is a manifestation of what is often called the scientific method.
In Chapter 2 we introduced the concept of a balance equation to account for the total mass in the control volume. Mass is a conserved quantity that is neither created nor destroyed, so the concept of a balance equation is straightforward. We can and often do write balance equations for quantities that are not conserved, and it is appropriate to digress briefly to consider this point. One important example of a quantity that is not conserved is the mass of a reactive species. Suppose, for example, we wish to model the distribution and metabolism of the anticancer drug methotrexate in the human body. Methotrexate is not conserved: It enters the body and then disappears because of metabolism. Nevertheless, we are able to write a balance equation for this chemical species. (Note that the number of atoms of each of the elements making up the drug is a conserved quantity.)
Most people gain experience in the use of balances through personal finance. Wealth, be it personal, national, or global, is not a conserved quantity. Nevertheless, we can and do account for wealth, typically through balancing a checkbook or analyzing monthly statements from the bank. In this chapter we will illustrate the application of balance equations to the problem of determining the true cost of future expenditures. This is a problem of inherent interest to most of the population, but the net present worth accounting principle outlined here is of particular relevance to engineers involved in project planning and design.
Many hypersonic vehicles are designed to follow trajectories that extend well into the upper atmosphere where the density is extremely low. Despite this, aerodynamic heating is still a critical issue because of the very high flight velocity. The U.S. Space Shuttle Orbiter, for instance, experienced peak heating at a height of about 74 km even though ambient density at that altitude is not much more than one millionth of sea-level density. Shock wave–boundary-layer interactions (SBLIs) that occur within these flows are nearly always sites of intense localized heating; thus, it is essential to predict the level correctly to avoid vehicle structural failure or incurring unnecessary weight penalties by carrying excessive thermal protection.
Motivation for Analytical Work in the Computer Age
Notwithstanding the success of powerful CFD codes in predicting complex aerodynamic flowfields, analytical methods continue to be a valuable tool in the study of viscous-inviscid interaction problems for the following reasons:
Such methods appreciably enhance physical insight by illuminating the underlying basic mechanisms and fine-scale features of the problem, including the attendant similitude properties [1]. An example in the case of shock wave–boundary-layer interaction (SBLI) is the fundamental explanation of the phenomena of upstream influence and free interaction provided by the pioneering triple-deck–theory studies of Lighthill [2], Stewartson and Williams [3], and Neiland [4].
Analysis provides an enhanced conceptual framework to guide both the design of related experimental studies and the correlation and interpretation of the resulting data. This was exemplified in a recent study of wall-roughness effects on shock-wave–turbulent boundary-layer interaction wherein a two-layered analytical theory revealed key features and appropriate scaling properties of the problem that were then used to design and evaluate a companion experimental program [5].
Analytical solutions can enhance substantially the efficiency and cost-reduction of large-scale numerical codes [6] by both providing accurate representation of otherwise difficult far-field boundary conditions and serving as an imbedded local element within a global computation to capture key smaller-scale physics. An example of the latter is the application of a small-perturbation theory of transonic normal shock–turbulent boundary-layer interaction in a global inviscid-boundary layer [7]; the resulting hybrid code provided more than 100-fold savings in design-related parametric-study costs.
A final noteworthy benefit is the occasional revelation of the deeper basic explanation for well-known empiricisms, such as the local pressure-distribution inflection-point criteria for incipient separation that are widely used by experimentalists.
Shock wave–boundary-layer interactions (SBLIs) occur when a shock wave and a boundary layer converge and, since both can be found in almost every supersonic flow, these interactions are commonplace. The most obvious way for them to arise is for an externally generated shock wave to impinge onto a surface on which there is a boundary layer. However, these interactions also can be produced if the slope of the body surface changes in such a way as to produce a sharp compression of the flow near the surface – as occurs, for example, at the beginning of a ramp or a flare, or in front of an isolated object attached to a surface such as a vertical fin. If the flow is supersonic, a compression of this sort usually produces a shock wave that has its origin within the boundary layer. This has the same affect on the viscous flow as an impinging wave coming from an external source. In the transonic regime, shock waves are formed at the downstream edge of an embedded supersonic region; where these shocks come close to the surface, an SBLI is produced.
By definition, transonic shock wave–boundary layer interactions (SBLIs) feature extensive regions of supersonic and subsonic flows. Typically, such interactions are characterized by supersonic flow ahead of the shock wave and subsonic flow downstream of it. This mixed nature of the flow has important consequences that make transonic interactions somewhat different from supersonic or hypersonic interactions.
The key difference between transonic interactions and other SBLIs is the presence of subsonic flow behind the shock wave. Steady subsonic flow does not support waves (e.g., shock waves or expansion fans), and any changes of flow conditions are gradual in comparison to supersonic flow. This imposes constraints on the shock structure in the interaction region because the downstream flow conditions can feed forward and affect the strength, shape, and location of the shock wave causing the interaction. The flow surrounding a transonic SBLI must satisfy the supersonic as well as subsonic constraints imposed by the governing equations. The interaction also is sensitive to downstream disturbances propagating upstream in the subsonic regions. In contrast, supersonic interactions are “shielded” from such events by the supersonic outer flow.
Some of the most serious and challenging problems encountered by the designers of hypersonic vehicles arise because of the severity of the heating loads and the steepness of the flow gradients that are generated in shock wave–boundary layer interaction (SBLI) regions. The characteristics of these flows are difficult to predict accurately due in no small measure to the significant complexity caused by shear-layer transition, which occurs at very low Reynolds numbers and can lead to enhanced heating loads and large-scale unsteadiness. Even for completely laminar flows, viscous interaction can degrade appreciably the performance of control and propulsion systems. It is interesting that both of the two major problems encountered with the U.S. Space Shuttle program were associated with SBLI. The first was the so-called Shuttle Flap Anomaly that nearly resulted in disaster on the craft's maiden flight due to a failure in the design phases to account correctly for the influence of real-gas effects on the shock-interaction regions over the control surfaces. During the flight, a significantly larger flap deflection was required to stabilize the vehicle than had been determined from ground tests in cold-flow facilities. Miraculously, it was possible to achieve the necessary control, and disaster was narrowly averted. The second problem was the leading-edge structural failure caused by the impact of foam that had been fractured and released from the shuttle tank as a result of the dynamic loads caused by a shock interaction. Figure 6.1 is an example of the shock structures that are generated among the shuttle, the main tank, and the solid reusable boosters. The contour plot illustrates the corresponding computer-predicted pressure distribution. Aerothermal loads generated by shock waves in the region of the bipod that supports the shuttle nose caused the foam glove to be fractured and released. Unfortunately, the damage this caused resulted in a tragic accident.