To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The extremely powerful technique of molecular dynamics simulation involves solving the classical many-body problem in contexts relevant to the study of matter at the atomistic level. Since there is no alternative approach capable of handling this extremely broad range of problems at the required level of detail, molecular dynamics methods have proved themselves indispensable in both pure and applied research. This book, first published in 2004, is a blend of tutorial and recipe collection, providing both an introduction to the subject for beginners and a reference manual for the more experienced practitioner. It is organized as a series of case studies that take the reader through each of the steps from formulating the problem, developing the necessary software, and then using the programs to make actual measurements. The second edition of the book includes a substantial amount of new material as well as completely rewritten software.
Using real-life applications, this graduate-level textbook introduces different mathematical methods of scientific computation to solve minimization problems using examples ranging from locating an aircraft, finding the best time to replace a computer, analyzing developments on the stock market, and constructing phylogenetic trees. The textbook focuses on several methods, including nonlinear least squares with confidence analysis, singular value decomposition, best basis, dynamic programming, linear programming, and various optimization procedures. Each chapter solves several realistic problems, introducing the modelling optimization techniques and simulation as required. This allows readers to see how the methods are put to use, making it easier to grasp the basic ideas. There are also worked examples, practical notes, and background materials to help the reader understand the topics covered. Interactive exercises are available at www.cambridge.org/9780521849890.
How to find stationary values of functions of a single variable f(x), of several variables f(x, y, …) and of constrained variables, where x, y, … are subject to the n constraints gi(x, y, …) = 0, i = 1, 2, …, n will be known to the reader and is summarized in Sections A.3 and A.7 of Appendix A. In all those cases the forms of the functions f and gi were known, and the problem was one of finding the appropriate values of the variables x, y, etc.
We now turn to a different kind of problem in which we are interested in bringing about a particular condition for a given expression (usually maximizing or minimizing it) by varying the functions on which the expression depends. For instance, we might want to know in what shape a fixed length of rope should be arranged so as to enclose the largest possible area, or in what shape it will hang when suspended under gravity from two fixed points. In each case we are concerned with a general maximization or minimization criterion by which the function y(x) that satisfies the given problem may be found.
The calculus of variations provides a method for finding the function y(x). The problem must first be expressed in a mathematical form, and the form most commonly applicable to such problems is an integral.
For reasons that are explained in the preface to Essential Mathematical Methods for the Physical Sciences the text of the third edition of Mathematical Methods for Physics and Engineering (MMPE) (Cambridge: Cambridge University Press, 2006) by Riley, Hobson and Bence, after a number of additions and omissions, has been republished as two slightly overlapping texts. Essential Mathematical Methods for the Physical Sciences (EMMPS) contains most of the more advanced material, and specifically develops mathematical methods that can be applied throughout the physical sciences; an augmented version of the more introductory material, principally concerned with mathematical tools rather than methods, is available as Foundation Mathematics for the Physical Sciences. The full text of MMPE, including all of the more specialized and advanced topics, is still available under its original title.
As in the third edition of MMPE, the penultimate subsection of each chapter of EMMPS consists of a significant number of problems, nearly all of which are based on topics drawn from several sections of that chapter. Also as in the third edition, hints and outline answers are given in the final subsection, but only to the odd-numbered problems, leaving all even-numbered problems free to be set as unaided homework.
This book is the solutions manual for the problems in EMMPS. For the 230 plus oddnumbered problems it contains, complete solutions are available, to both students and their teachers, in the form of this manual; these are in addition to the hints and outline answers given in the main text.