To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Group theory helps readers in understanding the energy spectrum and the degeneracy of systems possessing discrete symmetry and continuous symmetry. The fundamental concepts of group theory and its applications are presented with the help of solved problems and exercises. The text covers two essential aspects of group theory, namely discrete groups and Lie groups. Important concepts including permutation groups, point groups and irreducible representation related to discrete groups are discussed with the aid of solved problems. Topics such as the matrix exponential, the circle group, tensor products, angular momentum algebra and the Lorentz group are explained to help readers in understanding the quark model and theory composites. Real-life applications including molecular vibration, level splitting perturbation, crystal field splitting and the orthogonal group are also covered. Application-oriented solved problems and exercises are interspersed throughout the text to reinforce understanding of the key concepts.
The advent of powerful desktop computers has revolutionized scientific analysis and engineering design in fields as disparate as particle physics and telecommunications. Modern Mathematical Methods for Physicists and Engineers provides a mathematical and computational education for students, researchers, and practising engineers. The author begins with a review of computation, and then deals with a range of key concepts including sets, fields, matrix theory, and vector spaces. He then goes on to cover more advanced subjects such as linear mappings, group theory, and special functions. In this way, he concentrates exclusively on the most important topics for the working physical scientist or engineer with the aim of helping them to make intelligent use of the latest computational and analytical methods. The book contains well over 400 homework problems and covers many topics not dealt with in other textbooks. It will be ideal for senior undergraduate and graduate students in the physical sciences and engineering, as well as a valuable reference for working engineers.
Unique in its clarity, examples, and range, Physical Mathematics explains simply and succinctly the mathematics that graduate students and professional physicists need to succeed in their courses and research. The book illustrates the mathematics with numerous physical examples drawn from contemporary research. This second edition has new chapters on vector calculus, special relativity and artificial intelligence and many new sections and examples. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations, Bessel functions, and spherical harmonics, the book explains topics such as the singular value decomposition, Lie algebras and group theory, tensors and general relativity, the central limit theorem and Kolmogorov's theorems, Monte Carlo methods of experimental and theoretical physics, Feynman's path integrals, and the standard model of cosmology.