To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Körner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. This edition of Körner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.
Group theory, originating from algebraic structures in mathematics, has long been a powerful tool in many areas of physics, chemistry and other applied sciences, but it has seldom been covered in a manner accessible to undergraduates. This book from renowned educator Robert Kolenkow introduces group theory and its applications starting with simple ideas of symmetry, through quantum numbers, and working up to particle physics. It features clear explanations, accompanying problems and exercises, and numerous worked examples from experimental research in the physical sciences. Beginning with key concepts and necessary theorems, topics are introduced systematically including: molecular vibrations and lattice symmetries; matrix mechanics; wave mechanics; rotation and quantum angular momentum; atomic structure; and finally particle physics. This comprehensive primer on group theory is ideal for advanced undergraduate topics courses, reading groups, or self-study, and it will help prepare graduate students for higher-level courses.