To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ab initio molecular dynamics has been called a “virtual matter laboratory” [510] and even a “virtual laboratory” [934]. This notion is justified in view of the obvious parallels to experiments, being performed typically in the real laboratory. In the virtual lab, ideally, a system is prepared in some initial state and then evolves according to the basic laws of (quantum-statistical) physics – without the need for experimental input. The trajectory thus generated by ab initio molecular dynamics can be analyzed in arbitrary detail, including the dynamics of the electronic structure, which hence offers deep insights into the occuring processes. As a third step, the initial state and/or the external conditions such as for instance the temperature or composition of the system can be varied, but the system can also be exposed to light, electrical current, hydrostatic pressure, or uniaxial mechanical forces. Thus, not only the investigated matter as such is virtual, but also the apparatus used to manipulate matter, for instance a laser beam or an atomic force microscope, is fully represented “in silico”. It is clear to every practitioner that this viewpoint is highly idealistic for more than one reason, but still this philosophy allows one to compute observables with predictive power and is at the same time the reason behind the broad application range and versatility of ab initio simulations. Furthermore, progress in the general availability of powerful computer hardware makes it easier as time goes on to follow the “virtual lab avenue” to achieve scientific progress.
In the previous chapter the canonical commutation relations for semisimple Lie algebras were elegantly expressed in terms of roots. Although roots were introduced to simplify the expression of commutation relations, they can be used to classify Lie algebras and to provide a complete list of simple Lie algebras. We achieve both aims in this chapter. However, we use two different methods to accomplish this. We classify Lie algebras by specifying their root space diagrams. This is a relatively simple job using a “building up” approach, adding roots to rank l root space diagrams to construct rank l + 1 root space diagrams. However, it is not easy to prove the completeness of root space diagrams by this method. Completeness is obtained by introducing Dynkin diagrams. These specify the inner products among a fundamental set of basis roots in the root space diagram. In this approach completeness is relatively simple to prove, while enumeration of the remaining roots within a root space diagram is less so.
Properties of roots
In an effort to cast the commutation relations of a semisimple Lie algebra into an eigenvalue-eigenvector format, a secular equation was constructed from the regular representation. The rank of an algebra is, among other things:
(i) the number of independent functions in the secular equation;
(ii) the number of independent roots of the secular equation;
(iii) the number of mutually commuting operators in the Lie algebra;
(iv) the number of invariant operators that commute with all elements in the Lie algebra (Casimir operators);
(v) the dimension of the positive-definite root space that summarizes the commutation relations.
The study of Lie groups can be greatly facilitated by linearizing the group in the neighborhood of its identity. This results in a structure called a Lie algebra. The Lie algebra retains most, but not quite all, of the properties of the original Lie group. Moreover, most of the Lie group properties can be recovered by the inverse of the linearization operation, carried out by the EXPonential mapping. Since the Lie algebra is a linear vector space, it can be studied using all the standard tools available for linear vector spaces. In particular, we can define convenient inner products and make standard choices of basis vectors. The properties of a Lie algebra in the neighborhood of the origin are identified with the properties of the original Lie group in the neighborhood of the identity. These structures, such as inner product and volume element, are extended over the entire group manifold using the group multiplication operation.
Why bother?
Two Lie groups are isomorphic if:
(i) their underlying manifolds are topologically equivalent;
(ii) the functions defining the group composition laws are equivalent.
Two manifolds are topologically equivalent if they can be smoothly deformed into each other. This requires that all their topological indices, such as dimension, Betti numbers, connectivity properties, etc., are equal.
Two group composition laws are equivalent if there is a smooth change of variables that deforms one function into the other.
Lie groups were initially introduced as a tool to solve or simplify ordinary and partial differential equations. The model for this application was Galois' use of finite groups to solve algebraic equations of degree two, three, and four, and to show that the general polynomial equation of degree greater than four could not be solved by radicals. In this chapter we show how the structure of the finite group that leaves a quadratic, cubic, or quartic equation invariant can be used to develop an algorithm to solve that equation.
The program of Lie
Marius Sophus Lie (1842–1899) embarked on a program that is still not complete, even after a century of active work. This program attempts to use the power of the tool called group theory to solve, or at least simplify, ordinary differential equations.
Earlier in nineteenth century, Évariste Galois (1811–1832) had used group theory to solve algebraic (polynomial) equations that were quadratic, cubic, and quartic. In fact, he did more. He was able to prove that no closed form solution could be constructed for the general quintic (or any higher degree) equation using only the four standard operations of arithmetic (+, −, ×, ÷) as well as extraction of the nth roots of a complex number.
Lie initiated his program on the basis of analogy.
Lie group theory was initially developed to facilitate the solution of differential equations. In this guise its many powerful tools and results are not extensively known in the physics community. This chapter is designed as an antidote to this anemia. Lie's methods are an extension of Galois' methods for algebraic equations to the study of differential equations. The extension is in the spirit of Galois' work: the technical details are not similar. The principle observation – Lie's great insight – is that the simple constant that can by added to any indefinite integral of dy/dx = g(x) is in fact an element of a continuous symmetry group – the group that maps solutions of the differential equation into other solutions. This observation was used – exploited – by Lie to develop an algorithm for determining when a differential equation had an invariance group. If such a group exists, then a first order ordinary differential equation can be integrated by quadratures, or the order of a higher order ordinary differential equation can be reduced.
Galois inspired Lie. If the discrete invariance group of an algebraic equation could be exploited to generate algorithms to solve the algebraic equation “by radicals,” might it be possible that the continuous invariance group of a differential equation could be exploited to solve the differential equation “by quadratures”? Lie showed emphatically in 1874 that the answer is YES!, and work has hardly slowed down in the field that he pioneered from that time to the present.
Many years ago I wrote the book Lie Groups, Lie Algebras, and Some of Their Applications (New York: Wiley, 1974). That was a big book: long and difficult. Over the course of the years I realized that more than 90% of the most useful material in that book could be presented in less than 10% of the space. This realization was accompanied by a promise that some day I would do just that – rewrite and shrink the book to emphasize the most useful aspects in a way that was easy for students to acquire and to assimilate. The present work is the fruit of this promise.
In carrying out the revision I have created a sandwich. Lie group theory has its intellectual underpinnings in Galois theory. In fact, the original purpose of what we now call Lie group theory was to use continuous groups to solve differential (continuous) equations in the spirit that finite groups had been used to solve algebraic (finite) equations. It is rare that a book dedicated to Lie groups begins with Galois groups and includes a chapter dedicated to the applications of Lie group theory to solving differential equations. This book does just that. The first chapter describes Galois theory, and the last chapter shows how to use Lie theory to solve some ordinary differential equations. The fourteen intermediate chapters describe many of the most important aspects of Lie group theory and provide applications of this beautiful subject to several important areas of physics and geometry.
In this chapter we continue the development begun in the previous chapter. These two chapters focus on determining the structure of a Lie algebra and putting it into some canonical form. In the previous chapter we determined the types of subalgebras that every Lie algebra is constructed from. In this chapter we put the commutation relations into a standard form. This can be done for any Lie algebra. For semisimple Lie algebras this standard form has a very rigid structure whose usefulness is surpassed only by its beauty.
Objectives of this program
In the previous chapter we studied the commutation relations of a Lie algebra through its regular representation. This study was carried out using as a tool the Cartan–Killing inner product. As far as possible, this was the only method used. In the present chapter we introduce a second powerful tool from the theory of linear vector spaces. This is the eigenvalue decomposition. This tool is introduced in an attempt to find standard forms for the commutation relations. If a standard form is available then the properties of a Lie algebra, as well as its identification (classification), can be determined at sight.
The eigenoperator decomposition is effected by computing and studying a secular equation determined from the matrix of the regular (or any other matrix) representation of the Lie algebra.