To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a combined experimental and numerical effort, we investigate the generation and reduction of airfoil tonal noise. The means of noise control are streak generators in the form of cylindrical roughness elements. These elements are placed periodically along the span of the airfoil at the mid-chord streamwise position. Experiments are performed for a wide range of Reynolds numbers and angles of attack in a companion work (Alva et al., AIAA Aviation Forum, 2023). In the present work, we concentrate on numerical investigations for a further investigation of selected cases. We have performed wall-resolved large-eddy simulations for a NACA 0012 airfoil at zero angle of attack and Mach 0.3. Two Reynolds numbers (${0.8\times 10^{5}}$ and ${1.0 \times 10^{5}}$) have been investigated, showing acoustic results consistent with experiments at the same Reynolds but lower Mach numbers. Roughness elements attenuate tones in the acoustic field and, for the higher Reynolds number, suppress them. Through Fourier decomposition and spectral proper orthogonal decomposition analysis of streamwise velocity data, dominating structures have been identified. Further, the coupling between the structures generated by the surface roughness and the instability modes (Kelvin–Helmholtz) of the shear layer has been identified through stability analysis, suggesting stabilisation mechanisms by which the sound generation by the airfoil is reduced by the roughness elements.
Modelling the nonlinear forcing is critical for linear models based on resolvent or input–output analyses. For compressible wall-bounded turbulence, little is known on what the real forcing looks like due to limited data, so the prediction agrees more qualitatively than quantitatively with direct numerical simulations (DNSs). Here, we present detailed forcing statistics of stochastic linear models, derived from elaborate DNS datasets for channel flows with bulk Mach number reaching 3. These statistics directly explain the success and failure of current models and provide guidance for further improvements. The benchmark linearised Navier–Stokes (LNS) and eLNS models are considered; the latter is assisted by eddy-viscosity-related terms. First, we prove the self-consistency of the models by using DNS-computed forcing as the input. Second, we present the spectral distributions of the forcing and its components. Third, we quantify the acoustic components, absent in incompressible cases, within the linear models. We reveal that the LNS forcing can exhibit relatively high coherence and low rank, very different from the modelled diagonal full-rank forcing. The eddy-viscosity-related term is not partial modelling of the LNS forcing; contrarily, the former is much larger than the latter, serving to disrupt the low-rank feature, enhance diagonal dominance and increase robustness across scales. The scales narrow in either horizontal direction are most susceptible to acoustic modes, while the others are little affected (${\lt}2\,\%$ in energy). Furthermore, the extended strong Reynolds analogy is assessed in predicting the density and temperature components.
A systematic study is conducted both experimentally and theoretically on the wake-induced vibration of an inelastic or zero structural stiffness cylinder placed behind a perfectly elastic or rigid cylinder. The mass ratio m* of the inelastic cylinder is 11.1. The spacing ratio L/D is 2.0–6.0, where L is the distance between centers of the two cylinders, and D is the cylinder diameter. The range of Reynolds number Re is 1.97 × 103–1.18 × 104. It has been found that the inelastic cylinder becomes aerodynamically elastic because the cylinder and the fluctuating wake interact, inducing an effective stiffness and thus giving rise to an aeroelastic natural frequency. This frequency depends on the added mass, fluid damping and flow-induced stiffness and is always smaller than the vortex shedding frequency, irrespective of Re and L/D. The wake-induced vibration of the inelastic cylinder may be divided into a desynchronisation branch and a galloping branch. The vibration amplitude jumps greatly at the transition from desynchronisation to galloping for L/D = 2.0–4.5 but not so for L/D = 5.0–6.0. The flow-induced stiffness is linearly correlated with Re, generally higher in the reattachment regime than in the coshedding regime and smaller in galloping than in desynchronisation. Other aspects of the inelastic cylinder are also investigated in detail, including the dependence on Re of the Strouhal numbers, hydrodynamic forces, phase lag between lift and displacement and flow characteristics.
The intensity of the turbulence in tokamaks and stellarators depends on its ability to excite and sustain zonal flows. Insight into this physics may be gained by studying the ‘residual’, i.e. the late-time linear response of the system to an initial perturbation. We investigate this zonal-flow residual in the limit of a small magnetic mirror ratio, where we find that the typical quadratic approximation to RH (Rosenbluth & Hinton, 1998 Phys. Rev. Lett. vol. 80, issue 4, pp. 724–727) breaks down. Barely passing particles are in this limit central in determining the resulting level of the residual, which we estimate analytically. The role played by the population with large orbit width provides valuable physical insight into the response of the residual beyond this limit. Applying this result to tokamak, quasi-symmetric and quasi-isodynamic equilibria, using a near-axis approximation, we identify the effect to be more relevant (although small) in the core of quasi-axisymmetric fields, where the residual is smallest. The analysis in the paper also clarifies the relationship between the residual and the geodesic acoustic mode, whose typical theoretical set-ups are similar.
It is thought that isolated neutron stars receive a natal kick velocity at birth nearly aligned with their spin axis. Direct observational confirmation of this alignment is currently limited to a single source in a supernova remnant (PSR J0538+2817), for which the three-dimensional velocity has been well constrained. Meanwhile, pulsar polarisation statistics suggest the existence of a spin-kick correlation, though both aligned and orthogonal cases remain possible. However, if the velocities of radiopulsars are predominantly aligned with their spin axes, a systematic difference in the observed transverse velocities of pulsars with small and large magnetic obliquities would be expected. In particular, due to projection effects, weakly oblique rotators should exhibit smaller, less scattered transverse velocities. Conversely, the transverse velocities of pulsars with large magnetic inclination should reflect their actual three-dimensional velocities. This study uses this idea to analyse samples of 13 weakly and 25 strongly oblique pulsars with known distances and proper motions. We find that their peculiar velocities are distributed differently, with statistical confidence levels of 0.007 and 0.016 according to the Anderson–Darling and Kolmogorov–Smirnov tests, respectively. We performed a detailed population synthesis of isolated pulsars, considering the evolution of their viewing geometry in isotropic and spin-aligned kick scenarios. The observed split in the transverse velocity distributions and its amplitude are consistent with the spin-aligned kick model, but not with the isotropic case. At the same time, an orthogonal kick would predict a similar effect, but with the opposite sign. This provides robust support for pulsar spin kick alignment based on statistics, independently of polarisation.
The wake merging of two side-by-side porous discs with varying disc spacing is investigated experimentally in a wind tunnel. Two disc designs used in the literature are employed: a non-uniform disc and a mesh disc. Hot-wire anemometry is utilised to acquire two spanwise profiles at 8 and 30 disc diameters downstream and along the centreline between the dual-disc configuration up to 40 diameters downstream. The spanwise Castaing parameter profiles confirm the appearance of rings of internal intermittency at the outermost parts of the wakes. These rings are the first feature to interact between the discs. After this point, the turbulence develops to a state whereby an inertial range is observable in the spectra. Farther downstream, the internal intermittency shows the classical features of homogeneous, isotropic turbulence. These events are repeatable and occur in the same order for both types of porous discs. This robustness allows us to develop a general map of the merging of the two wakes.
This paper presents an experimental and analytical investigation into the use of trailing edge slits for the reduction of aerofoil trailing edge noise. The noise reduction mechanism is shown to be fundamentally different from conventional trailing edge serrations, relying on destructive interference from highly compact and coherent sources generated at either ends of the slit. This novel approach is the first to exploit the coherence intrinsic to the boundary layer turbulence. Furthermore, the study demonstrates that trailing edge slits not only achieve superior noise reductions compared with sawtooth serrations of the same amplitude at certain conditions, but also offer frequency-tuning capability for noise reduction. Noise reduction is driven by the destructive interference between acoustic sources at the root and tip of the slit, which radiate with a phase difference determined by the difference in times taken for the boundary layer flow to convect between the root and tip. Maximum noise reductions occur at frequencies where the phase difference between these sources is $180^\circ$. The paper also presents a detailed parametric study into the variation in noise reductions due to the slit length, slit wavelength and slit root width. Additionally, a simple two-source analytic model is proposed to explain the observed results. Wind tunnel measurements of the unsteady flow field around the trailing edge slits are also presented, providing insights into the underlying flow physics.
The linear stability of a thermally stratified fluid layer between horizontal walls, where non-Brownian thermal particles are injected continuously at one boundary and extracted at the other – a system known as particulate Rayleigh–Bénard (pRB) – is studied. For a fixed volumetric particle flux and minimal thermal coupling, reducing the injection velocity stabilises the system when heavy particles are introduced from above, but destabilises it when light particles are injected from below. For very light particles (bubbles), low injection velocities can shift the onset of convection to negative Rayleigh numbers, i.e. heating from above. Particles accumulate non-uniformly near the extraction wall and in regions of strong vertical flow, aligning with either wall-impinging or wall-detaching zones depending on whether injection is at sub- or super-terminal velocity. The increase of the volumetric particle flux always enhances these effects.
Collisionless shocks are frequently analysed using the magnetohydrodynamic (MHD) formalism, even though the required collisionality hypothesis is not fulfilled. In a previous work (Bret & Narayan, 2018 J. Plasma Phys. vol. 84, p. 905840604), we presented a model of collisionless shock displaying an important departure from the expected MHD behaviour, in the case of a strong flow aligned magnetic field. This model was non-relativistic. Here, it is extended to the relativistic regime, considering zero upstream pressure and upstream Lorentz factor $\gg 1$. The result agrees satisfactorily with Particle-in-Cell simulations and shows a similar, and important, departure from the MHD prediction. In the strong field regime, the density jump $r$, seen in the downstream frame, behaves like $r \sim 2 + 1/\gamma _{\mathrm{up}}$, while MHD predicts 4 ($\gamma _{\mathrm{up}}$ is the Lorentz factor of the upstream measured in the downstream frame). Only pair plasmas are considered.
We simulate thermal convection in a two-dimensional square box using the no-slip condition on all boundaries, and isothermal bottom and top walls, and adiabatic sidewalls. We choose 0.1 and 1 for the Prandtl number $Pr$ and vary the Rayleigh number $Ra$ between $10^6$ and $10^{12}$. We particularly study the temporal evolution of integral transport quantities towards their steady states. Perhaps not surprisingly, the velocity field evolves more slowly than the thermal field, and its steady state – which is nominal in the sense that large-amplitude low-frequency oscillations persist around plausible averages – is reached exponentially. We study these oscillation characteristics. The transient time for the velocity field to achieve its nominal steady state increases almost linearly with the Reynolds number. For large $Ra$, the Reynolds number itself scales almost as $Ra^{2/3}\, Pr^{-1}$, and the Nusselt number as $Ra^{2/7}$.
An analytical formulation is provided that describes the first two natural modes of the fluid–structure interaction of an incompressible current with a pitching and heaving flexible plate. The objective is twofold: first, to present a general derivation of analytical expressions for the lift, moment and the flexural moments exerted by an inviscid flow on a pitching and heaving plate whose deformation is general enough that the coupling of the flexural moments with the structural equations allows solving analytically the first two natural modes of the system; second, to analyse the propulsion performance of the foil when actuated near the first two natural frequencies. For the second purpose, one also needs the thrust force generated through the motion and the general deformation of the foil considered, which is analytically derived using the linearized vortex impulse theory, extending and systematizing previous works. The analytical expressions, once viscous effects are taken into consideration through nonlinear transverse damping and offset drag coefficients, are compared with small-amplitude available experimental data, discussing their limitations. It is found that low stiffness pitching and heaving are quite different, with a pitching flexible foil only generating thrust near the second resonant frequency, whereas heaving always generates thrust, with the maximum slightly below the second natural frequency. Maximum thrust for large stiffness pitching is around the first natural frequency. The maximum efficiency occurs at frequencies close to the first natural mode if the foil is sufficiently rigid, but it is not related to the natural frequencies as the rigidity decreases.
High-energy, short-pulse laser-driven proton–boron (p–11B) fusion has attracted growing interest due to its aneutronic character and potential for clean energy generation. In this study, we report on two experimental campaigns carried out at the LFEX laser facility using petawatt-class laser systems (energy $\sim$1.2–1.4 kJ, pulse duration 2.7 ps, peak intensity $\sim$(2–3) × 1019 W/cm2). The experiments explored the influence of complex target geometries – including spherical, cylindrical and wedge-shaped configurations – on α-particle yield. Our results demonstrate that spherical targets can enhance α-particle production by up to two orders of magnitude compared to planar targets of identical composition and also lead to a noticeable shift of the α-particle energy spectrum toward higher values. Furthermore, we implemented a novel diagnostic technique for unambiguous α-particle detection using a CR-39 detector integrated into a Thomson parabola spectrometer. Particle-in-cell simulations performed with the Smilei code provide additional insight into the role of self-generated magnetic fields in modulating particle dynamics. These simulations highlight the critical interplay among target geometry, confinement effects and fusion efficiency. Overall, our findings underscore the potential of optimized target designs to significantly enhance fusion yield and α-particle output in p–11B fusion, with promising implications for the development of laser-driven α-particle sources and advanced clean energy concepts.
Rayleigh–Taylor (RT) stability occurs when a single-mode light/heavy interface is accelerated by rarefaction waves, exhibiting a sustained oscillation in perturbation amplitude. If the perturbation is accelerated again by a shock propagating in the same direction as the rarefaction waves, the interface evolution will shift from RT stability to Richtmyer–Meshkov (RM) instability. Depending upon the interface state when the shock arrives, the perturbation growth can be actively manipulated through controlling the magnitudes of vorticity deposited by rarefaction and shock waves. The present work first theoretically analyses the 12 different growth possibilities of a light/heavy interface accelerated by co-directional rarefaction and shock waves. A theoretical model is established by combining the RT growth rate with the RM growth rate, providing the conditions for the different possibilities of the perturbation growth. Based on the model, extensive experiments are designed and conducted in the specially designed rarefaction-shock tube. By precisely controlling the shock arrival time at the interface, the different growth possibilities, including promotion, reduction and freeze-out, are realised in experiments. This work verifies the feasibility of manipulating the light/heavy perturbation via co-directional rarefaction and shock waves, which sheds light on control of hydrodynamic instabilities in practical applications.
This paper numerically investigates the heat transport and bifurcation of natural convection in a differentially heated cavity filled with entangled polymer solution combined with the boundary layer and kinetic energy budget analysis. The polymers are described by the Rolie-Poly model, which effectively captures the rheological response of entangled polymers. The results indicate that the competition between its shear-thinning and elasticity dominates the flow structures and heat transfer rate. The addition of polymers tends to enhance the heat transfer as the polymer viscosity ratio ($\beta$) decreases or the relaxation time ratio ($\xi$) increases. The amount of heat transfer enhancement (HTE) behaves non-monotonically, which first increases significantly and then remains almost constant or decreases slightly with the Weissenberg number ($Wi$). The critical $Wi$ gradually increases with the increasing $\xi$, where the maximum HTE reaches approximately $64.9\,\%$ at $\beta = 0.1$. It is interesting that even at low Rayleigh numbers, the flow transitions from laminar to periodic flows in scenarios with strong elasticity. The bifurcation is subcritical and exhibits a typical hysteresis loop. Then, the bifurcation routes driven by inertia and elasticity are examined by direct numerical simulations. These results are illustrated by time histories, Fourier spectra analysis and spatial structures observed at varying time intervals. The kinetic energy budget indicates that the stretch of the polymers leads to great energy exchange between polymers and flow structures, which plays a crucial role in the hysteresis phenomenon. This dynamic behaviour contributes to the strongly self-sustained and self-enhancing processes in the flow.
Periodic travelling waves at the free surface of an incompressible inviscid fluid in two dimensions under gravity are numerically computed for an arbitrary vorticity distribution. The fluid domain over one period is conformally mapped from a fixed rectangular one, where the governing equations along with the conformal mapping are solved using a finite-difference scheme. This approach accommodates internal stagnation points, critical layers and overhanging profiles, thereby overcoming limitations of previous studies. The numerical method is validated through comparisons with known solutions for zero and constant vorticity. Novel solutions are presented for affine vorticity functions and a two-layer constant-vorticity scenario.
Generation of steady streaming vortices is usually accomplished by mechanically vibrating bodies, as occurs in several microfluidic applications for mixing, as well as for transport and handling of microparticles. Here, we propose the generation of streaming from the harmonic electromagnetic forcing of a free-moving circular magnet held afloat on a shallow electrolytic layer, and show that the sense of rotation of steady vortices is the opposite to that of the classical streaming flow. Reverse streaming is attributed to the coupling between the fluid and the free-moving body. Analytical solutions offer a physical rationale for the observed flow dynamics, while numerical simulation reproduces the experimental observations satisfactorily.
The presence of multi-component protons with their distinct features is confirmed by various space missions in the Earth’s outer magnetosphere regions. Isotropic cold protons and anisotropic hot protons significantly influence/modify the dispersion behaviour of various modes and instabilities and regulate the magnetospheric dynamics effectively. Our present study pays attention to the left-hand-polarised proton cyclotron mode, which gets unstable in the large proton temperature anisotropy condition, i.e. $T_{\perp p}\gt T_{\parallel p}$. Such favourable thermal conditions for protons are extensively observed during the compression of the solar wind against the Earth’s magnetic field. To reveal the wave dynamics in more detail, i.e. time-scale variations in the cold and hot proton temperatures and resulting wave-energy density, we further allow the time evolution of our model bi-Maxwellian distribution function in response to the proton cyclotron instability. Based on velocity-moment techniques, we formulated a set of equations comprising an instantaneous dispersion relation, dynamical perpendicular and parallel temperature relations and a wave-energy density equation. For the graphical illustrations of our mathematical results, we choose initial conditions that are relevant to magnetospheric space environments and reported in various experimental studies. Our exact numerical analysis shows the notable impact of hot proton temperature anisotropy and relative density on the real frequency, growth rate, evolution of initial distributions and wave-energy density of the proton cyclotron instability. Such detailed outcomes will be quite helpful for global/local magnetospheric experimental and simulation studies.
The shear Alfvén wave (SAW) continuum plays a critical role in the stability of energetic particle-driven Alfvén eigenmodes. We develop a theoretical framework to analyze the SAW continuum in three-dimensional (3-D) quasisymmetric magnetic fields, focusing on its implications for stellarator design. By employing a near-axis model and degenerate perturbation theory, the continuum equation is solved, highlighting unique features in 3-D configurations, such as the interactions between spectral gaps. Numerical examples validate the theory, demonstrating the impact of flux-surface shaping and quasisymmetric field properties on continuum structure. The results provide insights into optimizing stellarator configurations to minimize resonance-driven losses of energetic particles. This work establishes a basis for incorporating Alfvénic stability considerations into the stellarator design process, demonstrated through optimization of a quasihelical configuration to avoid high-frequency spectral gaps.
A set of experiments were conducted on the LArge Plasma Device (LAPD) at UCLA to test the operational principles of a traveling wave antenna of the comb-line type. This antenna was designed to launch helicon waves (fast waves in the lower hybrid range of frequencies) on DIII-D. With the order-of-magnitude lower static magnetic field on LAPD, the antenna excites waves in a different regime. Whenever fast waves can propagate in LAPD, slow waves are also supported by the plasma so it is necessary to distinguish between the two cold-plasma branches in evaluating the effectiveness of the launcher. The results show that the launcher couples well to fast waves when the plasma supports fast-wave propagation; control of the principal imposed parallel wavenumber can be achieved through varying the launch frequency on the antenna within its bandwidth of operation; and that the launched waves exhibit strong directionality. We also investigate the role of the plasma profile and wave mode on the loading characteristics. Additionally, a comparison with full-wave modeling of the propagating waves is shown using both a cold-plasma model in COMSOL and a hot-plasma model in RFPisa, which obtain similar results in the present regime.
High-power fiber lasers generate local heat load extremes during their operation, which increase the fiber temperature and lead to adverse thermal effects, such as transverse mode instability or cladding/coating thermal damage. The local temperature extremes are usually located near the end of a fiber where the pump power is delivered. In this paper, longitudinally inhomogeneous doping concentration profiles are applied to reduce the heat load extremes. Utilizing a new degree of freedom, it is shown by both simulations and measurements that the maximal temperature along the fiber can be effectively decreased by using active fibers with an increasing concentration profile in the direction of the pumping power. The concept is studied by a comprehensive numerical model that considers temperature-dependent parameters and is also demonstrated by measurement on an in-house built thulium-doped fiber laser formed by spliced sections with different concentrations. The output power of 54 W with the slope efficiency exceeding 62% was reached.