To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ice shelves that spread into the ocean can develop rifts that can trigger iceberg calving and enhance ocean-induced melting. Fluid mechanically, this system is analogous to an extensionally dominated radial spreading of a non-Newtonian fluid into a relatively inviscid and denser ambient fluid. Laboratory experiments have shown that rift patterns can emerge when the spreading fluid is shear thinning. Linear stability analysis supports these findings, predicting that while the instability mechanism is active in Newtonian fluids, it is suppressed by stabilising secondary-flow cellular vortices. Here, we explore the fully nonlinear evolution of a radially spreading Newtonian fluid, assessing whether large-amplitude perturbations could drive an instability. We use a quasi-three-dimensional numerical simulation that solves the full nonlinear shallow-shelf approximation, tracing the evolving fluid front, and validate it with known axisymmetric solutions and predictions from linear-stability theory. We find that large-amplitude perturbations induce nonlinear effects that give rise to non-axisymmetric patterns, including cusp-like patterns along the fluid front and complex secondary-flow eddies, which have neither been predicted theoretically nor observed experimentally. However, despite these nonlinear effects, large-amplitude perturbations alone are insufficient to induce rift-like patterns in Newtonian fluids. Strain-rate peaks at the troughs of the fluid front suggest that shear-thinning fluids may become more mobile in these regions, potentially leading to rift formation. This coincides with the likely weakening of stabilising forces as the fluid becomes more shear-thinning. These findings elucidate the critical role of nonlinear viscosity on the formation of rift-like patterns, which is the focus of Part 2 of this study.
Junction- and metal oxide-field effect transistors are introduced and their operation is explained. Governing equations are presented. DC and switching applications are given. The Universal DC bias circuit is used to provide DC biasing for AC amplification circuits. The AC equivalents for the field-effect transistor are developed and then used to derive the properties of the common-source, common-drain, and common-gate amplifiers.
Characteristics of the turbulent/non-turbulent interface (TNTI) and entrainment in separated and reattaching flows induced by an oscillating fence are investigated using time-resolved particle image velocimetry. Disturbed flows are classified into subcritical, transitional, critical and supercritical cases based on the ratio of the oscillation frequency to the natural vortex shedding frequency. In the recirculation zone, distinct vortices across different cases lead to significant variations in TNTI characteristics. In the subcritical case, the TNTI evolution resembles that in the stationary fence case but with intensified height fluctuations due to the undulation of separated shear layer. For other cases, the mean TNTI height increases with the oscillation frequency, while height fluctuation diminishes. The TNTI thickness varies with nearby vortices, scaling with the Taylor microscale. After the reattachment, TNTI height distributions converge into two groups: subcritical and transitional cases exhibit larger fluctuations and positively skewed probability density functions (PDFs), while critical and supercritical cases show smaller fluctuations and basically symmetric PDFs. The TNTI thickness becomes consistent across various cases, matching the adjacent small-scale vortex size. Besides, the nibbling mechanism of entrainment aligns well with the flow development. The minimum mean entrainment velocity coincides with the strongest prograde vortex while the maximum occurs at $x\approx 1.2x_{{r}}$ (where $x$ denotes the streamwise coordinate and $x_{{r}}$ is the mean reattachment position) in all cases. Engulfment is enhanced near the reattachment location by oscillations in the transitional and critical cases, but is suppressed in the supercritical cases due to the weakness of vortex structures at higher oscillation frequencies.
This chapter discusses quantum noise and techniques for quantum error correction, a necessity for quantum computing. It discusses bit-flip errors, phase-flip errors, and their combination. The formalism of quantum operations is introduced, along with the operator-sum representation and the Kraus operators. With this in mind, the chapter discusses the depolarization channel and imprecise gates, as well as (briefly) amplitude and phase damping. For error correction, repetition codes are introduced to motivate Shor’s 9-qubit error correction technique.
We have introduced a compact infrastructure for exploration and experimentation, but all at the level of individual gates. Higher levels of abstraction are needed to scale to larger programs. The chapter discusses several quantum programming languages, including their specific tooling, such as hierarchical program representations or entanglement analysis. General challenges for compilation are discussed as well as compiler optimization techniques.
Cells are capable of maintaining a long-term memory in addition to genetic information, which is generally referred to as epigenetics. In the study of memory, digital memory has been often assumed, which is understood as multistability, whereas in the cell there is another form of memory – continuous (analog), kinetic memory. Referring to the kinetic constraints of the glass theory, it is shown that a kinetic memory with slow relaxation emerges as an alternative to the conventional memories of multiple stable states. It is characterized by a slow logarithmic change with several plateaus that can be occupied during the relaxation process. If the same enzyme catalyzes a stepwise reaction, as long as the amount of such enzyme is not sufficient, the reaction process can be hindered by enzyme-limited competition, resulting in kinetic memory. A combination of catalytic reactions can create a negative correlation between the amount of substrate and enzyme in it, thereby allowing a slow relaxation process with many plateaus, where multiple states can be maintained over a long period of time.
We examine how ambient temperature $T$ (23–90 $^\circ \mathrm{C}$) alters the dynamics of spark-induced cavitation bubbles across a range of discharge energies. As $T$ rises, the collapse of an isolated spherical bubble weakens monotonically, as quantified by the Rayleigh collapse factor, minimum volume and maximum collapse velocity. When the bubble is generated near a rigid wall, the same thermal attenuation is reflected in reduced jet speed and diminished migration. Most notably, at $T \gtrsim 70\,^\circ \text{C}$, we observe a previously unreported phenomenon: secondary cavitation nuclei appear adjacent to the primary bubble interface where the local pressure falls below the Blake threshold. The pressure reduction is produced by the over-expansion of the primary bubble itself, not by rarefaction waves as suggested in earlier work. Coalescence between these secondary nuclei and the parent bubble seeds pronounced surface wrinkles that intensify Rayleigh–Taylor instability and promote fission, providing an additional route for collapse strength attenuation. These findings clarify the inception mechanism of high-temperature cavitation and offer physical insight into erosion mitigation in heated liquids.
This chapter summarizes the concept and methodology of the present volume by emphasizing the relevance of macro-micro consistency. It also discusses current research topics on the origin of life, the relationship between developmental and evolutionary processes, the resilience of the ecosystem that maintains diversity, and dynamic memory in the brain, as well as possible future directions for establishing a theory of universal biology. All in all, fresh views of biology are presented with a physicist's perspective to reveal universality.
This chapter serves as a bridge from the introductory material to the sections on quantum algorithms. We start by implementing a classical circuit using quantum gates and show that quantum computers are at least as capable as classical computers. Then we discuss the term “beyond classical,” which is now the preferred term to describe computation that can be run efficiently on a quantum computer but would be intractable to run on a classical computer. For this, we discuss in detail Google’s seminal quantum supremacy paper.