4A Chemical Potential
Very often, the term “chemical potential” is not well understood by the students. After studying thermal physics and statistical mechanics for several times, students are still in a lot of confusion about the meaning of the term “chemical potential”. This quantity is represented by the letter ð. Typically, students learn the definition of ð, its properties, its derivation in some simple cases, and its consequences, and work out numerical problems on it. Still, students ask the question: “What is the chemical potential?” and “What does it actually mean?” Attempts are made in this appendix to clarify the meaning of this physical quantity ð with some simple examples.
The concept of chemical potential has appeared first in the classical works of J. W. Gibbs. Since then, it has become actually a subtle concept in thermodynamics and statistical mechanics. It is not easy to grasp the meaning and significance of chemical potential ð, like thermodynamic concepts such as temperature ð , internal energy ð¸, or even entropy ð. In fact, chemical potential ð has acquired a reputation as a concept not easy to grasp even for the experienced physicist. Chemical potential was introduced by Gibbs within the context of an extensive exposition on the foundations of statistical mechanics. In his exposition, Gibbs considered a grand canonical ensemble of systems in which the exchange of particles occurs with the surroundings. In this description, the chemical potential ð appears as a constant required for a necessary closure to the corresponding set of equations. Thus, a fundamental connection with thermodynamics is achieved by observing that the unknown constant ð is indeed related to standard thermodynamic functions like the Helmholtz free energy ð¹ = ð â ð ð or the Gibbs thermodynamic potential ðº = ð¹ + ð ð through their first derivatives. ð, in fact, appeared as a conjugate variable to volume V. 4A.1 Comments about chemical potential
We are familiar with the term potential used in mechanical and electrical system. A capacity factor is associated with each potential term. For example, in a mechanical system, mass is the capacity factor associated with the gravitational potential ð(â2 â â1), where â1 and â2 are the corresponding heights, and the gravitational work done is given by ðð(â2 â â1).