To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define the notion of spherical harmonics, as a generalization from the two-sphere case. We use coset theory to define them, and then we describe examples of spherical harmonics. The KK decomposition is defined, and then the particular cases of groups spaces and spheres are considered for the spherical harmonics.
We describe various solution-generating techniques (dualities and transformations). We start with abelian T-duality, generalized to nonabelian T-duality, and then TsT transformations, O(d,d) transformations, and null Melvin twists.
We start by describing the particle action in the first-order and second-order formalism. This is then generalized to the bosonic string, for which we discuss actions and equations of motion, constraints, quantization, and oscillators, and we add background fields. The particle is generalized to the particle, and from that, we find we can generalize the bosonic string to the GS superstring, the NS-R (spinning) string, and the Berkovits superstring, using pure spinors.
We consider supersymmetric AdS/CFT gravity dual pairs and their deformations. First, we consider supersymmetric and integrable deformations: the beta deformation of N = 4 SYM and the gamma deformation, a three-parameter generalization. Then, we consider the eta and lambda deformations of the string worldsheet in AdS5 × S5. Then, the Yang–Baxter deformation, and the generalized supergravity equations.
For extremal black holes, we have the attractor mechanism, originally defined in the context of N = 2 supergravity. This is then interpreted and described in the Sen’s entropy function formalism. The attractor mechanism exists also in five-dimensional gauged supergravity, and by embedding it in string theory, we can relate it to holography and the AdS/CFT correspondence.
After an introduction to general relativity and supersymmetry, the formalism of supergravity is defined, on-shell, off-shell, and in superspace, using coset theory and local superspace. Higher dimensions, extended susy, and KK reduction are also defined. Then, various applications are described: dualities and solution-generating techniques, solutions and their susy algebra, gravity duals and deformations, supergravity on the string worldsheet and superembeddings, cosmological inflation, no-go theorems and Witten’s positive energy theorem, compactification of low-energy string theory and toward embedding the Standard Model using supergravity, susy breaking and minimal supergravity.
We examine cosmological inflation in supergravity. We start with N = 1 supergravity with a single chiral superfield, then consider D-term inflation, with the example of the FI model. We examine possible field redefinitions. Supergravity models with slow-roll conditions satisfied are found. A special embedding of any inflationary model into supergravity is defined. The “alpha attractors” defined by Kallosh and Linde in N = 1 supergravity are defined.
This paper presents the effects of radio frequency interference (RFI) mitigation on a radio telescope’s sensitivity and beam pattern. It specifically explores the impact of subspace-projection mitigation on the phased array feed (PAF) beams of the Australian SKA Pathfinder (ASKAP) telescope. The goal is to demonstrate ASKAP’s ability to make science observations during active RFI mitigation. The target interfering signal is a self-generated clock signal from the digital receivers of ASKAP’s PAF. This signal is stationary, so we apply the mitigation projection to the beamformer weights at the beginning of the observation and hold them fixed. We suppressed the unwanted narrowband signal by 31 dB, to the noise floor of an 880 s integration on one antenna, with a typical degradation in sensitivity of just 1.5%. Sensitivity degradation over the whole 36 antenna array of 3.1% was then measured via interferometric assessment of system equivalent flux density (SEFD). These measurements are in line with theoretical calculation of noise increase using the correlation of the beam weights and RFI spatial signature. Further, degradation to the main beam’s gain is $\pm$ 0.4% on average at the half-power point, with no significant change to the gain in the first sidelobe and no variation during extended observations; also consistent with our modelling. In summary, we present the first demonstration of mitigation via spatial nulling with PAFs on a large aperture synthesis array telescope and assess impact on sensitivity and beam shape via SEFD and holography measurements. The mitigation introduces smaller changes to sensitivity than intrinsic sensitivity differences between beams, does not preclude high dynamic range imaging and, in continuum 1 MHz mode, recovers an otherwise corrupted holography beam map and usable astronomical source correlations in the RFI-affected channel.
This graduate textbook covers the basic formalism of supergravity, as well as its modern applications, suitable for a focused first course. Assuming a working knowledge of quantum field theory, Part I gives the basic formalism, including on- and off-shell supergravity, the covariant formulation, superspace and coset formulations, coupling to matter, higher dimensions and extended supersymmetry. A wide range of modern applications are introduced in Part II, including string theoretical (T- and U-duality, AdS/CFT, susy and sugra on the worldsheet, superembeddings), gravitational (p-brane solutions and their susy, attractor mechanism, Witten's positive energy theorem) and phenomenological (inflation in supergravity, supergravity no-go theorems, string theory constructions at low energies, minimal supergravity and its susy-breaking). The broader emphasis on applications than competing texts gives Ph.D. students the tools they need to do research that uses supergravity and benefits researchers already working in areas related to supergravity.
Trends in elemental enrichment with stellar age can give us a powerful avenue to identify thus far unexplained origin sites of the elements. We investigate stellar abundance trends using the GALAH DR3 high-resolution spectroscopic dataset of 6 234 solar-type stars. Our study explores the elemental abundance [X/Fe] of sodium (Na) with stellar age. We find a pronounced enrichment in [Na/Fe] at super solar metallicity (i.e. [Fe/H] $ \gt \,0$) in the old sequence of Milky Way disc stars, a trend demanding a deeper understanding of the underlying source(s) responsible for the nucleosynthesis. This progressive [Na/Fe] enrichment at the young end of the old sequence has essential implications for Galactic archaeology. In this work, we propose a novel selection technique for separating the Milky Way’s thick and thin disc stellar populations (i.e. old and young sequences) based on the observed [Na/Fe] rise of $\sim$0.1 dex for stars around 5–8 Gyr old. We also compare our selection method to the conventional [Mg/Fe] vs. [Fe/H] selection approach, and we find that our new Na-based selection method better disentangles the overlap between young- and old-sequence disc stars at these intermediate ages. This is especially true at super solar [Fe/H], where the [Mg/Fe] vs. [Fe/H] or [$\alpha$/Fe] vs. [Fe/H] separation approaches exhibit significant overlap. This new selection method should help us better understand the history of the formation of the Milky Way disc.
Results from some recent numerical works, including ours, lend credence to the thesis that the ambient environment, that is, the magnitude of external pressure, affects the star-forming ability of clouds and filaments. In continuation with our series of papers on this subject, we explore this thesis further by developing new hydrodynamic simulations of accreting filaments confined by external pressures in the range $10^{4 -7}$ K cm$^{-3}$. Our principal findings are – (i) irrespective of linemass, filament-fragmentation generally yields spheroidal cores. The initially sub-critical filaments in low to intermediate external pressure environments form broad cores suggesting that weakly self-gravitating filaments must fragment via the collect – and- collapse mode to form broad cores. Transcritical filaments, by contrast, become susceptible to the Jeans-type instability and form pinched cores; (ii) the ambient environment bears upon the physical properties of filaments including their FWHM$_{fil}$. Only the filaments initially suffused with subsonic turbulence in Solar-Neighbourhood-like environments, however, have FWHM$_{fil}$$\sim$ 0.1 pc. In high pressure environs such filaments not only have much smaller widths, but also become severely eviscerated. On the contrary, filaments suffused with initially supersonic turbulence are typically broader; (iii) the quasi-oscillatory nature of velocity gradients must be ubiquitous along filament lengths and its magnitude generally increases with increasing pressure. The periodicity of the velocity gradients approximately matches the fragmentation lengthscale of filaments; (iv) oscillatory features of the radial component of the velocity gradient are a unreliable proxy for detecting signatures of accretion onto filaments; and (v) filaments at either extreme of external pressure are inefficient at cycling gas into the dense phase which could reconcile the corresponding inefficiency of star-formation in such environments.
Fast radio bursts (FRBs) are millisecond-duration radio waves from the Universe. Even though more than 50 physical models have been proposed, the origin and physical mechanism of FRB emissions are still unknown. The classification of FRBs is one of the primary approaches to understanding their mechanisms, but previous studies classified conventionally using only a few observational parameters, such as fluence and duration, which might be incomplete. To overcome this problem, we use an unsupervised machine-learning model, the Uniform Manifold Approximation and Projection to handle seven parameters simultaneously, including amplitude, linear temporal drift, time duration, central frequency, bandwidth, scaled energy, and fluence. We test the method for homogeneous 977 sub-bursts of FRB 20121102A detected by the Arecibo telescope. Our machine-learning analysis identified five distinct clusters, suggesting the possible existence of multiple different physical mechanisms responsible for the observed FRBs from the FRB 20121102A source. The geometry of the emission region and the propagation effect of FRB signals could also make such distinct clusters. This research will be a benchmark for future FRB classifications when dedicated radio telescopes such as the square kilometer array or Bustling Universe Radio Survey Telescope in Taiwan discover more FRBs than before.
We present new Australia Telescope Compact Array (ATCA) radio observations towards N 49, one of the brightest extragalactic supernova remnants (SNRs) located in the Large Magellanic Cloud (LMC). Our new and archival ATCA radio observations were analysed along with Chandra X-ray data. These observations show a prominent ‘bullet’ shaped feature beyond the southwestern boundary of the SNR. Both X-ray morphology and radio polarisation analysis support a physical connection of this feature to the SNR. The ‘bullet’ feature’s apparent velocity is estimated at $\sim$1 300 km s$^{-1}$, based on its distance ($\sim$10 pc) from the remnant’s geometric centre and estimated age ($\sim$7 600 yr). we estimated the radio spectral index, $\alpha= -0.55 \pm 0.03$ which is typical of middle-age SNRs. Polarisation maps created for N 49 show low to moderate levels of mean fractional polarisation estimated at 7$\pm$1% and 10$\pm$1% for 5.5 and 9 GHz, respectively. These values are noticeably larger than found in previous studies. Moreover, the mean value for the Faraday rotation of SNR N 49 from combining CABB data is 212$\pm$65 rad m$^{-2}$ and the maximum value of RM is 591$\pm$103 rad m$^{-2}$.
We present the Pilot Survey Phase 2 data release for the Wide-field ASKAP L-band Legacy All-sky Blind surveY (WALLABY), carried-out using the Australian SKA Pathfinder (ASKAP). We present 1760 H i detections (with a default spatial resolution of 30′′) from three pilot fields including the NGC 5044 and NGC 4808 groups as well as the Vela field, covering a total of $\sim 180$ deg$^2$ of the sky and spanning a redshift up to $z \simeq 0.09$. This release also includes kinematic models for over 126 spatially resolved galaxies. The observed median rms noise in the image cubes is 1.7 mJy per 30′′ beam and 18.5 kHz channel. This corresponds to a 5$\sigma$ H i column density sensitivity of $\sim 9.1\times10^{19}(1 + z)^4$ cm$^{-2}$ per 30′′ beam and $\sim 20$ km s$^{-1}$ channel and a 5$\sigma$ H i mass sensitivity of $\sim 5.5\times10^8 (D/100$ Mpc)$^{2}$ M$_{\odot}$ for point sources. Furthermore, we also present for the first time 12′′ high-resolution images (“cut-outs”) and catalogues for a sub-sample of 80 sources from the Pilot Survey Phase 2 fields. While we are able to recover sources with lower signal-to-noise ratio compared to sources in the Public Data Release 1, we do note that some data quality issues still persist, notably, flux discrepancies that are linked to the impact of side lobes associated with the dirty beams due to inadequate deconvolution. However, in spite of these limitations, the WALLABY Pilot Survey Phase 2 has already produced roughly a third of the number of HIPASS sources, making this the largest spatially resolved H i sample from a single survey to date.
We investigate the impact of relativistic SZ corrections on Planck measurements of massive galaxy clusters, finding that they have a significant impact at the $\approx$5–15% and up to $\approx$ 3$\sigma$ level. We investigate the possibility of constraining temperature directly from these SZ measurements but find that only weak constraints are possible for the most significant detections; for most clusters, an external temperature measurement is required to correctly measure integrated Compton-y. We also investigate the impact of profile shape assumptions and find that these have a small but non-negligible impact on measured Compton-y, at the $\approx$ 5% level. Informed by the results of these investigations, we recalibrate the Planck SZ observable-mass scaling relation, using the updated NPIPE data release and a larger sample of X-ray mass estimates. Along with the expected change in the high-mass end of the scaling relation, which does not impact Planck mass estimation, we also find hints of a low-mass deviation, but this requires better understanding of the selection function in order to confirm.
The Ultra Violet Imaging Telescope (UVIT) onboard India’s first dedicated multiwavelength satellite AstroSat observed a significant fraction of the sky in the ultraviolet with a spatial resolution of 1.4$^{\prime\prime}$. We present a catalogue of the point sources observed by UVIT in the far ultraviolet (FUV; 1 300–1 800 Å) and near ultraviolet (NUV; 2 000–3 000 Å). We carried out astrometry and photometry of 428 field pointings in the FUV and 54 field pointings in the NUV band, observed in 5 filter bands in each channel, respectively, covering an area of about 63 square degrees. The final catalogue contains about 102 773 sources. The limiting magnitude(AB) of the F148W band filter, that has the largest number of detections is $\sim$$21.3$. For the NUV channel, we find the limiting magnitude at around $\sim$23. We describe the final catalogue and present the results of the statistical analysis.
Contact binaries challenge contemporary stellar astrophysics with respect to their incidence, structure, and evolution. We explore these issues through a detailed study of two bright examples: S Ant and $\varepsilon$ CrA, that permit high-resolution spectroscopy at a relatively good S/N ratio. The availability of high-quality photometry, including data from the TESS satellite as well as Gaia parallaxes, allows us to apply the Russell paradigm to produce reliable up-to-date information on the physical properties of these binaries. As a result, models of their interactive evolution, such as the thermal relaxation oscillator scenario, can be examined. Mass transfer between the components is clearly evidenced, but the variability of the O’Connell effect over relatively short-time scales points to irregularities in the mass transfer or accretion processes. Our findings indicate that S Ant may evolve into an R CMa type Algol, while the low mass ratio of $\varepsilon$ CrA suggests a likely merger of its components in the not-too-distant future.
New advancements in radio data post-processing are underway within the Square Kilometre Array (SKA) precursor community, aiming to facilitate the extraction of scientific results from survey images through a semi-automated approach. Several of these developments leverage deep learning methodologies for diverse tasks, including source detection, object or morphology classification, and anomaly detection. Despite substantial progress, the full potential of these methods often remains untapped due to challenges associated with training large supervised models, particularly in the presence of small and class-unbalanced labelled datasets.
Self-supervised learning has recently established itself as a powerful methodology to deal with some of the aforementioned challenges, by directly learning a lower-dimensional representation from large samples of unlabelled data. The resulting model and data representation can then be used for data inspection and various downstream tasks if a small subset of labelled data is available.
In this work, we explored contrastive learning methods to learn suitable radio data representations by training the SimCLR model on large collections of unlabelled radio images taken from the ASKAP EMU and SARAO MeerKAT GPS surveys. The resulting models were fine-tuned over smaller labelled datasets, including annotated images from various radio surveys, and evaluated on radio source detection and classification tasks. Additionally, we employed the trained self-supervised models to extract features from radio images, which were used in an unsupervised search for objects with peculiar morphology in the ASKAP EMU pilot survey data. For all considered downstream tasks, we reported the model performance metrics and discussed the benefits brought by self-supervised pre-training, paving the way for building radio foundational models in the SKA era.
We present the Sydney Radio Star Catalogue, a new catalogue of stars detected at megahertz to gigahertz radio frequencies. It consists of 839 unique stars with 3 405 radio detections, more than doubling the previously known number of radio stars. We have included stars from large area searches for radio stars found using circular polarisation searches, cross-matching, variability searches, and proper motion searches as well as presenting hundreds of newly detected stars from our search of Australian SKA Pathfinder observations. The focus of this first version of the catalogue is on objects detected in surveys using SKA precursor and pathfinder instruments; however, we will expand this scope in future versions. The 839 objects in the Sydney Radio Star Catalogue are distributed across the whole sky and range from ultracool dwarfs to Wolf-Rayet stars. We demonstrate that the radio luminosities of cool dwarfs are lower than the radio luminosities of more evolved sub-giant and giant stars. We use X-ray detections of 530 radio stars by the eROSITA soft X-ray instrument onboard the Spectrum Roentgen Gamma spacecraft to show that almost all of the radio stars in the catalogue are over-luminous in the radio, indicating that the majority of stars at these radio frequencies are coherent radio emitters. The Sydney Radio Star Catalogue can be found in Vizier or at https://radiostars.org.