To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ATLASGAL PDR survey is discussed with its high detection rates of chosen PDR tracers towards HII sources. While previous chemical modelling of specific sources shows that in a cold lower-density envelope the abundances of C2H and c-C3H2 vary little, subsequently during cloud collapse (with density increase, temperature rise, and the emergence of HII regions) from 105 yr on in the models the column density ratio increases steeply. The observed abundances of some high-column-density tracers (H13CO+ and HC15N) in the survey are almost constant over the range of H2 column densities, while others (HCO, CN, C2H and c-C3H2) fall as H2 increases. The HCO detections are confirmed as arising from clumps likely associated with PDRs, and higher HCO abundances are undoubtedly linked in the models to ongoing FUV chemistry.
The chapter presents two surveys of low-mass star formation regions (LMSFR). The first survey uses the IRAM (Institute for Radio Astronomy in the Millimeter Range) 30 metre telescope at Pico Veleta in Spain to identify 16 deeply embedded YSOs and the emission from eight complex organic molecules (COMs). The second survey uses ALMA (Atacama Large Millimetre Array) directed towards five low-mass candidates (all in the Serpens cluster at distances ~440 pc) and detected emission from five COMs species.
The radio signal transmitted by the Mars Express (MEX) spacecraft was observed regularly between the years 2013–2020 at X-band (8.42 GHz) using the European Very Long Baseline Interferometry (EVN) network and University of Tasmania’s telescopes. We present a method to describe the solar wind parameters by quantifying the effects of plasma on our radio signal. In doing so, we identify all the uncompensated effects on the radio signal and see which coronal processes drive them. From a technical standpoint, quantifying the effect of the plasma on the radio signal helps phase referencing for precision spacecraft tracking. The phase fluctuation of the signal was determined for Mars’ orbit for solar elongation angles from 0 to 180 deg. The calculated phase residuals allow determination of the phase power spectrum. The total electron content of the solar plasma along the line of sight is calculated by removing effects from mechanical and ionospheric noises. The spectral index was determined as $-2.43 \pm 0.11$ which is in agreement with Kolmogorov’s turbulence. The theoretical models are consistent with observations at lower solar elongations however at higher solar elongation ($>$160 deg) we see the observed values to be higher. This can be caused when the uplink and downlink signals are positively correlated as a result of passing through identical plasma sheets.
We present the Cosmological Double Radio Active Galactic Nuclei (CosmoDRAGoN) project: a large suite of simulated AGN jets in cosmological environments. These environments sample the intra-cluster media of galaxy clusters that form in cosmological smooth particle hydrodynamics (SPH) simulations, which we then use as inputs for grid-based hydrodynamic simulations of radio jets. Initially conical jets are injected with a range of jet powers, speeds (both relativistic and non-relativistic), and opening angles; we follow their collimation and propagation on scales of tens to hundreds of kiloparsecs, and calculate spatially resolved synthetic radio spectra in post-processing. In this paper, we present a technical overview of the project, and key early science results from six representative simulations which produce radio sources with both core- (Fanaroff-Riley Type I) and edge-brightened (Fanaroff-Riley Type II) radio morphologies. Our simulations highlight the importance of accurate representation of both jets and environments for radio morphology, radio spectra, and feedback the jets provide to their surroundings.
Case Studies in Star Formation offers an overview of our current observational and theoretical understanding in the molecular astronomy of star formation. The book is divided into six sections: the first introduces an overview of star formation and the essential language, concepts and tools specific to molecular astronomy studies. Each subsequent section focuses on individual sources, beginning with a description of large-scale surveys. The volume covers low- and high mass star formation, ionization and photodissociation regions, and concludes with the extragalactic perspective. Conventional textbooks begin with principles, ending with a few convenient examples. Through copious examples, Case Studies reflects the reality of research, which requires the creative matching of ongoing observations to theory and vice-versa, often raising as many questions as answers. This supplementary study guide enables graduate students and early researchers to bridge the gap between textbooks and the wealth of research literature.
We present a new high-resolution neutral atomic hydrogen (Hi) survey of ring galaxies using the Australia Telescope Compact Array (ATCA). We target a sample of 24 ring galaxies from the Buta (1995) Southern Ring Galaxy Survey Catalogue in order to study the origin of resonance-, collisional- and interaction-driven ring galaxies. In this work, we present an overview of the sample and study their global and resolved Hi properties. In addition, we also probe their star formation properties by measuring their star formation rates (SFR) and their resolved SFR surface density profiles. We find that a majority of the barred galaxies in our sample are Hi-deficient, alluding to the effects of the bar in driving their Hi deficiency. Furthermore, for the secularly evolving barred ring galaxies in our sample, we apply Lindblad’s resonance theory to predict the location of the resonance rings and find very good agreement between predictions and observations. We identify rings of Hi gas and/or star formation co-located at one or the other major resonances. Lastly, we measure the bar pattern speed ($\Omega_{\textrm{bar}}$) for a sub-sample of our galaxies and find that the values range from 10–90 $\textrm{km s}^{-1}$kpc$^{-1}$, in good agreement with previous studies.
In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of ${\sim} 450\, {\textrm{deg}}^{2}\,\textrm{h}^{-1}$, the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 ${\textrm{pc cm}}^{-3}$, to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from ${\sim} 3\% $ of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).
As Russell and Vogt pointed out in the 1920s, the properties of a main sequence star depend crucially on its mass. After the main sequence, the star’s mass is also vitally important in determining its physical properties. Will helium burning begin or not? If it begins, will it begin with a flash? Will carbon burning begin or not? The answers to these questions, as we have seen, depend primarily on the star’s mass.
When investigating a political scandal, the standard advice is “follow the money.” When investigating stellar structure, a comparably useful piece of advice is “follow the energy.” Since energy cannot be created or destroyed (if we regard mass as a sort of congealed energy), forensic investigation of a star’s energy content will uncover whatever physical processes are hidden in a star’s opaque interior.