To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Francis Bacon, one of the luminaries of modern science, is thought to have said that “knowledge is power.” Since Bacon made that statement, it has become abundantly clear that humans have a very distinct and difficult “knowledge problem.” There is a fundamental defect in how we come to know anything, and while this is recognized as a problem, the depths of the problem are seldom appreciated and even less frequently discussed. At first glance such a statement may seem ridiculous. What is the problem in saying someone knows something? I know where I am and what I’m doing. I know the names and faces of my friends, family, and acquaintances. I know how to drive a car, how to cook (at least somewhat), and how to pay bills. In fact, just to navigate the tasks of daily life one has to “know” a great number of things.
Thus far we have drawn a picture of hypothetico-deductivism (HD), where one can predict outcomes from hypotheses, and where the validity of the hypotheses can be established by investigating whether the predicted outcomes actually occur. If the outcome does occur, then it shows the theory is correct; if the outcome doesn’t occur, then it shows the theory is false. This may sound straightforward on the surface, and this is the way science appears to be perceived by many in both the lay public and even by some scientists themselves, but, regrettably, such is not the case. This seemingly straightforward approach differs from how science is actually carried out, and this misperception is both a function of misrepresentation and misunderstanding. The reason for the misunderstanding will be explored later; here it is necessary to define why the testing of hypotheses cannot be as simple as it seems. A nuanced understanding of this issue could not be more essential for a proper understanding of science. It may seem odd, but there are serious problems with determining how evidence confirms a hypothesis and how evidence rejects it – indeed, it is not entirely clear or uncontroversial as to what exactly evidence is or can be claimed to be.
There is a whole series of books, including New York Times bestsellers, about how the little “coincidences” we experience in life do not occur by chance – they are actually God speaking directly to us and are called “godwinks.” After all, what other likely explanation could there be? One coincidence might happen by freak chance, but so many people have so many stories that seem so unlikely that this must reflect a greater thing, a greater force – this must be the voice of God speaking to us personally. More than 1 million copies of Squire Rushnell’s “godwinks” books have been sold, so clearly this idea appeals widely to people. Of course, I cannot rule out, nor can anyone else, that God is actually speaking to us by using coincidence as his language – maybe this is just the way that God communicates with humans. Indeed, such is the basis for a vast number of belief systems, the number of adherents to which exceed the number of professional scientists in the world by far (it’s not even close). Can it be possible that so many people are wrong?
Francis Bacon, one of the luminaries of modern science, is thought to have said that “knowledge is power.” Since Bacon made that statement, it has become abundantly clear that humans have a very distinct and difficult “knowledge problem.” There is a fundamental defect in how we come to know anything, and while this is recognized as a problem, the depths of the problem are seldom appreciated and even less frequently discussed. At first glance such a statement may seem ridiculous. What is the problem in saying someone knows something? I know where I am and what I’m doing. I know the names and faces of my friends, family, and acquaintances. I know how to drive a car, how to cook (at least somewhat), and how to pay bills. In fact, just to navigate the tasks of daily life one has to “know” a great number of things.
Induction and deduction, as discussed in the previous chapter, have received a great deal of attention from multiple quarters. In the ninteenth century, the philosophers William Whewell and Charles Sanders Peirce focused on retroduction as a distinct mode of reasoning. Retroduction had been recognized by Aristotle as a separate entity with specific properties; however, it wasn’t until Whewell and Peirce that a strong distinction between retroduction and induction was emphasized.1 Retroduction is an essential part of human reasoning, without which ideas of causal relationships essentially could not expand, as induction and deduction can only get one so far. Indeed, Peirce (who, it can be argued, was most instrumental in recognizing the role of retroduction in science) described this mode of reasoning as “the only logical operation which introduces any new idea and commented: “[N]ot the smallest advance can be made in knowledge beyond the stage of vacant staring, without making an abduction [retroduction] at every step.2”
In the early 1950s, a group called the Seekers formed in a suburb of Chicago, based on the belief that they were receiving messages from a greater intelligence through a process called “automatic writing.” Automatic writing occurred when a medium (in this case, a woman named Dorothy Martin) entered a trance-like state that allowed her to write out channeled messages from a greater being called Sananda. Martin’s hand would basically take on a mind of its own and messages from Sananda would come forth on paper. An entire belief construct was derived from these messages, including an understanding that they were coming from a faraway planet named Clarion and that UFOs from Clarion were frequently visiting Earth.
Scientific advances have transformed the world. However, science can sometimes get things wrong, and at times, disastrously so. Understanding the basis for scientific claims and judging how much confidence we should place in them is essential for individual choice, societal debates, and development of public policy and laws. We must ask: what is the basis of scientific claims? How much confidence should we put in them? What is defined as science and what is not? This book synthesizes a working definition of science and its properties, as explained through the eyes of a practicing scientist, by integrating advances from philosophy, psychology, history, sociology, and anthropology into a holistic view. Crucial in our political climate, the book fights the myths of science often portrayed to the public. Written for a general audience, it also enables students to better grasp methodologies and helps professional scientists to articulate what they do and why.