To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In intensive feeding systems, competition may be high and social dominance may affect animal performance by changing dry matter intake (DMI) and behavioral time budgets. If competition level is maintain over time, the strategies developed by heifers of different social status are expected to differ. Thus, the aim of this study was to compare individual DMI, intake rate and eating, ruminating, lying and standing behaviors in dominant (DOM) and subordinate (SUB) pre-pubertal dairy heifers in a model study implying continuous competitive situations. A total of 16 Holstein and Jersey×Holstein pre-pubertal heifers (251±10 days old, weighing 208±14 kg; mean±SEM) were allocated into eight homogeneous dyads. Each dyad was maintained during 120 days (day 0=beginning of measurements) in pens, and received a total mixed ration from one feeder/dyad. The DOM and SUB heifers was determined (day 0, twice during the first month of the experiment and every month afterwards) by observation of the winner in agonistic interactions in each dyad after the feed was supplied. The general activity pattern (eating, ruminating, lying and standing) of each heifer was recorded by direct instantaneous scan-sampling, every 10 min for 12 h, in 7 days (days 1, 21, 35, 60, 75, 100 and 120). Individual DMI was estimated with the double marker technique, in three intervals (I=days 17-26; II=days 78-87 and III=days 112-120), while estimated intake rate (kg/min) was calculated for each interval as the DMI per total eating time. After the experiment was concluded, data of the first 5 and the last 6 h of the 12 h scan-sampling (related to the moment the feed was supplied) was grouped according to the moments of greater and lesser competition for feed on each day. During the first 5 h, where competition was expected to be highest, no differences in eating behavior were found between heifers of different social status, but DOM heifers spent more time ruminating and lying than SUB heifers, while SUB spent more time standing than DOM heifers. No differences were found on DMI between DOM and SUB, but SUB ate at a faster rate on interval II compared with DOM heifers. In conclusion, in this model study of heifer dyads, SUB heifers had greater intake rate with no differences in feed intake, spent less time ruminating and lying, and more time standing than DOM heifers during the first hours after feed delivery.
The effect of reduced balanced protein (RP) diet in the F0 and F1 generation of broiler breeders on the learning ability and memory retention of the F2 generation was investigated by means of a reward v. no reward discrimination T-maze test. There were two treatments for the F0 generation: control (C) group, reared on standard commercial diets, and reduced balanced protein (RP) group, fed with RP diets (25% reduction in CP and amino acids). The female F0-progeny of each treatment was again separated into the two dietary treatments, resulting in four treatments for the F1 generation: C/C, C/RP, RP/C and RP/RP (breeder feed in F0/F1 generation). The RP diets fed breeders received on average 10% more feed than C diets fed breeders to achieve a similar target BW. The F2 generation was composed of four treatments coming from the female F1-progeny of the four treatments and were all fed with C diet (namely C/C/C, C/RP/C, RP/C/C and RP/RP/C). All four F2 generation groups were able to complete the T-maze learning test with a slight difference in success rate but a significant difference within groups was observed regarding the time needed to complete the test. In general, the RP/RP/C group needed more time for completing the test compared with the other three groups and the shortest time was recorded for the RP/C/C group. At similar ages, breeders with early learning experience spent significantly less time in completing the test compared with unexperienced breeders. Long-term memory retention was observed in all four groups whereas the learning ability in solving the test decreased with age. It took longer for the breeders to complete the test at older ages. In conclusion, under our experimental conditions, the RP dietary treatment in previous generations had no influence on the T-maze learning ability and memory retention of broiler breeders of the third generation, although it might have effects on the working performance in the T-maze learning test of F2 generation breeders.
Multi-sire mating of a mob of ewes is commonly used in commercial sheep production systems. However, ram mating success (defined as the number of lambs sired by an individual) can vary between rams in the mating group. If this trait was repeatable and heritable, selection of rams capable of siring larger numbers of lambs could reduce the number of rams required for mating and ultimately lead to increased genetic gain. However, genetic correlations with other productive traits, such as growth and female fertility, could influence the potential for ram mating success to be used as a selection trait. In order to investigate this trait, parentage records (including accuracy of sire assignment) from 15 commercial ram breeding flocks of various breeds were utilised to examine the repeatability and heritability of ram mating success in multi-sire mating groups. In addition, genetic and phenotypic correlations with growth and female fertility traits were estimated using ASReml. The final model used for the ram mating success traits included age of the ram and mating group as fixed effects. Older rams (3+years old) had 15% to 20% greater mating success than younger rams (1 or 2 years of age). Increasing the stringency of the criteria for inclusion of both an individual lamb, based on accuracy of sire assignment, or a whole mating group, based on how many lambs had an assigned sire, increased repeatability and heritability estimates of the ram mating success traits examined. With the most stringent criteria employed, where assignment of sire accuracy was >0.95 and the total number of lambs in the progeny group that failed to have a sire assigned was<0.05, repeatability and heritability for loge(number of lambs) was 0.40±0.09 and 0.26±0.12, respectively. For proportion of lambs sired, repeatability and heritability were both 0.30±0.09. The two ram mating traits (loge(nlamb) and proportion) were highly correlated, both phenotypically and genetically (0.88±0.01 and 0.94±0.06, respectively). Both phenotypic and genetic correlations between ram mating success and growth and other female fertility traits were low and non-significant. In conclusion, there is scope to select rams capable of producing high numbers of progeny and thus increase selection pressure on rams to increase genetic gain.
Precision technologies and data have had relatively modest impacts in grass-based livestock ruminant production systems compared with other agricultural sectors such as arable. Precision technologies promise increased efficiency, reduced environmental impact, improved animal health, welfare and product quality. The benefits of precision technologies have, however, been relatively slow to be realised on pasture based farms. Though there is significant overlap with indoor systems, implementing technology in grass-based dairying brings unique opportunities and challenges. The large areas animals roam and graze in pasture based systems and the associated connectivity challenges may, in part at least, explain the comparatively lower adoption of such technologies in pasture based systems. With the exception of sensor and Bluetooth-enabled plate metres, there are thus few technologies designed specifically to increase pasture utilisation. Terrestrial and satellite-based spectral analysis of pasture biomass and quality is still in the development phase. One of the key drivers of efficiency in pasture based systems has thus only been marginally impacted by precision technologies. In contrast, technological development in the area of fertility and heat detection has been significant and offers significant potential value to dairy farmers, including those in pasture based systems. A past review of sensors in health management for dairy farms concluded that although the collection of accurate data was generally achieved, the processing, integration and presentation of the resulting information and decision-support applications were inadequate. These technologies’ value to farming systems is thus unclear. As a result, it is not certain that farm management is being sufficiently improved to justify widespread adoption of precision technologies currently. We argue for a user need-driven development of technologies and for a focus on how outputs arising from precision technologies and associated decision support applications are delivered to users to maximise their value. Further cost/benefit analysis is required to determine the efficacy of investing in specific precision technologies, potentially taking account of several yet to ascertained farm specific variables.
There is community concern about the treatment of farm animals post-farm gate, particularly animal transport and slaughter. Relationships between lamb behavioural and physiological variables on farm, stockperson, dog and lamb behavioural variables pre-slaughter and plasma cortisol, glucose and lactate in lambs post-slaughter were studied in 400 lambs. The lambs were observed in three behavioural tests, novel arena, flight distance to a human and temperament tests, before transport for slaughter. Closed-circuit television video footage was used to record stockperson, dog and lamb behaviour immediately before slaughter. Blood samples for cortisol, glucose and lactate analyses were collected on farm following the three behavioural tests and immediately post-slaughter. The regression models that best predicted plasma cortisol, glucose and lactate concentrations post-slaughter included a mixture of stockperson and dog behavioural variables as well as lamb variables both on-farm and pre-slaughter. These regression models accounted for 33%, 34% and 44% of the variance in plasma cortisol, glucose and lactate concentrations post-slaughter, respectively. Some of the stockperson and dog behaviours pre-slaughter that were predictive of the stress and metabolic variables post-slaughter included the duration of negative stockperson behaviours such as fast locomotion and lifting/pulling lambs, and the duration of dog behaviours such as lunging and barking at the lamb, while some of the predictive lamb behaviour variables included the durations of jumping and fleeing. Some of the physiological and behavioural responses to the behavioural tests on farm were also predictive of the stress and metabolic variables post-slaughter. These relationships support the well-demonstrated effect of handling on fear and stress responses in livestock, and although not direct evidence of causal relationships, highlight the potential benefits of training stockpeople to reduce fear and stress in sheep at abattoirs.
The transition period is the most critical period in the lactation cycle of dairy cows. Extended lactations reduce the frequency of transition periods, the number of calves and the related labour for farmers. This study aimed to assess the impact of 2 and 4 months extended lactations on milk yield and net partial cash flow (NPCF) at herd level, and on greenhouse gas (GHG) emissions per unit of fat- and protein-corrected milk (FPCM), using a stochastic simulation model. The model simulated individual lactations for 100 herds of 100 cows with a baseline lactation length (BL), and for 100 herds with lactations extended by 2 or 4 months for all cows (All+2 and All+4), or for heifers only (H+2 and H+4). Baseline lactation length herds produced 887 t (SD: 13) milk/year. The NPCF, based on revenues for milk, surplus calves and culled cows, and costs for feed, artificial insemination, calving management and rearing of youngstock, was k€174 (SD: 4)/BL herd per year. Extended lactations reduced milk yield of the herd by 4.1% for All+2, 6.9% for All+4, 1.1% for H+2 and 2.2% for H+4, and reduced the NPCF per herd per year by k€7 for All+2, k€12 for All+4, k€2 for H+2 and k€4 for H+4 compared with BL herds. Extended lactations increased GHG emissions in CO2-equivalents per t FPCM by 1.0% for All+2, by 1.7% for All+4, by 0.2% for H+2 and by 0.4% for H+4, but this could be compensated by an increase in lifespan of dairy cows. Subsequently, production level and lactation persistency were increased to assess the importance of these aspects for the impact of extended lactations. The increase in production level and lactation persistency increased milk production of BL herds by 30%. Moreover, reductions in milk yield for All+2 and All+4 compared with BL herds were only 0.7% and 1.1% per year, and milk yield in H+2 and H+4 herds was similar to BL herds. The resulting NPCF was equal to BL for All+2 and All+4 and increased by k€1 for H+2 and H+4 due to lower costs for insemination and calving management. Moreover, GHG emissions per t FPCM were equal to BL herds or reduced (0% to −0.3%) when lactations were extended. We concluded that, depending on lactation persistency, extending lactations of dairy cows can have a positive or negative impact on the NPCF and GHG emissions of milk production.
Optimal type and dietary inclusion rates of cereal grains for periparturient sheep are unknown. The objective was to determine effects of feeding diets with high (H) v. low (L) levels of ground corn grain (CN) v. combined ground wheat and barley grains (WB) on intake, rumen fermentation, colostrum and milk properties, and blood metabolites of periparturient sheep. Twenty Afshari×Merino ewes were used in a completely randomized design study from 24 days prepartum through 21 days postpartum. Ewes were kept indoors in individual boxes and received once daily at 0900 h total mixed rations. Treatments were mixed rations containing either (1) H or (2) L concentrate based on either (1) 100% CN or (2) 50 : 50 ratio of ground wheat : ground barley grains in a 2×2 factorial arrangement. Each treatment group had five ewes including two twin-lamb ewes and three single-lamb ewes. Postpartal dry matter intake (DMI) increased by feeding high CN v. high and low WB, while high v. low CN improved postpartum DMI. The DMI during lambing tended to increase with the high v. low WB. Feeding CN v. WB, and feeding both CN and WB at L v. H level increased fecal pH. Postpartal rumen pH was lower with the high v. low WB (5.7 v. 6.2). Rumen concentrations of propionate were lower and of acetate were higher with L v. H grain levels. Increased dietary grain reduced urine pH for WB (7.24 v. 7.83) but not for CN (7.63 v. 7.52) prepartum. Colostrum properties, postpartal urine pH, lamb weight at birth and 21 days of age, and placental weight and expulsion time were unaffected. Milk yield increased and milk fat yield tended to increase by H v. L grain diets. Plasma glucose was increased by feeding high v. low WB, whereas CN v. WB tended to reduce peripartal plasma non-esterified fatty acids (NEFA) and increased insulin to NEFA ratio. In conclusion, more cereal grains can be included in periparturient sheep diets and CN instead of WB may be fed to periparturient sheep to improve energy status. Findings suggest opportunities to optimize periparturient ewe physiology and performance through feeding certain cereals and avoiding high levels of WB.
New strategies must be developed to improve poultry performance and health. One of these strategies is the use of supplementations as sodium butyrate (SB) to improve the physiological status and then increasing the growth performance, but the best period of age in which the addition of SB is more effective on birds is not well understood. Therefore, the aim of this study was to investigate the effect of dietary inclusion of SB supplementation through the first, second or whole growth period on some physiological indices and growth performance of growing Japanese quail. In total, 240 unsexed 1-day-old quail chicks were divided into four groups (three replicates per group of 20 chicks in each). The first group was fed basal diet without SB from 1 to 42 days (control, T1), while SB at a rate of 1 g/kg basal diet was mixed with the feed of the 2nd, 3rd and 4th groups of chicks from 1 to 21 days (SB 1 to 21, T2), 1 to 42 days (SB 1 to 42, T3) and 22 to 42 days (SB 22 to 42, T4) of age, respectively. The results stated that addition of SB significantly improved live BW at 21 days, feed conversion ratio (FCR) and BW gain (BWG) during 1 to 21 days in T2 and T3 groups compared to T1 and T4 groups. During the whole period, group T3 had higher BWG and better FCR than the other groups (T1, T2 and T4). At 21 days, no significant differences among all treatments were detected on haematology and serum biochemistry except total protein and cholesterol. At 42 days, SB supplementation significantly improved most serum constituents, haematological parameters, villus height and width of intestine and morphometry of immune organs. The group fed SB throughout the experiment (T3) showed the best results. In conclusion, it is recommended feeding quail on diets containing SB through the whole growth period to show its affirmative impact on the growth and physiological indices.
Livestock is a major driver in most rural landscapes and economics, but it also polarises debate over its environmental impacts, animal welfare and human health. Conversely, the various services that livestock farming systems provide to society are often overlooked and have rarely been quantified. The aim of analysing bundles of services is to chart the coexistence and interactions between the various services and impacts provided by livestock farming, and to identify sets of ecosystem services (ES) that appear together repeatedly across sites and through time. We review three types of approaches that analyse associations among impacts and services from local to global scales: (i) detecting ES associations at system or landscape scale, (ii) identifying and mapping bundles of ES and impacts and (iii) exploring potential drivers using prospective scenarios. At a local scale, farming practices interact with landscape heterogeneity in a multi-scale process to shape grassland biodiversity and ES. Production and various ES provided by grasslands to farmers, such as soil fertility, biological regulations and erosion control, benefit to some extent from the functional diversity of grassland species, and length of pasture phase in the crop rotation. Mapping ES from the landscape up to the EU-wide scale reveals a frequent trade-off between livestock production on one side and regulating and cultural services on the other. Maps allow the identification of target areas with higher ecological value or greater sensitivity to risks. Using two key factors (livestock density and the proportion of permanent grassland within utilised agricultural area), we identified six types of European livestock production areas characterised by contrasted bundles of services and impacts. Livestock management also appeared to be a key driver of bundles of services in prospective scenarios. These scenarios simulate a breakaway from current production, legislation (e.g. the use of food waste to fatten pigs) and consumption trends (e.g. halving animal protein consumption across Europe). Overall, strategies that combine a reduction of inputs, of the use of crops from arable land to feed livestock, of food waste and of meat consumption deliver a more sustainable food future. Livestock as part of this sustainable future requires further enhancement, quantification and communication of the services provided by livestock farming to society, which calls for the following: (i) a better targeting of public support, (ii) more precise quantification of bundles of services and (iii) better information to consumers and assessment of their willingness to pay for these services.
Lowering protein level in diets for piglets urge to have knowledge on the piglet’s requirements for essential amino acids (AA) and their interactions. The present studies aimed to determine the interaction between the dietary level of valine (Val) and tryptophan (Trp) and the effect of AA imbalance at two levels of dietary Val on the growth performance of post-weaning piglets. In Experiment 1 (duration 4 weeks), the effects of supplementation of free l-Val (1.0 g/kg) and/or l-Trp (0.5 g/kg) in a low-CP diet (CP 17.7%), marginal in Trp and Val, was studied in a 2×2 factorial design and using an additional reference treatment (CP 19.5%). In Experiment 2 (duration 5 weeks), the influence of a stepwise increase in excess supply of isoleucine (Ile), histidine (His) and leucine (Leu), up to 10, 10% and 30% relative to their requirement values respectively, was evaluated at 60% or 70% standardized ileal digestible (SID) Val relative to SID lysine, using a 3×2 factorial design. In Experiment 1, over the whole experimental period, feed intake (FI) was affected by dietary Trp level (P<0.05) and feed conversion ratio (FCR) by both the level of Trp and Val in the diet (both P<0.05). Increasing Trp level increased FI and decreased FCR while increasing dietary Val level reduced FI and increased FCR. For BW gain (BWG), there was an interaction between dietary level of Trp and Val (P<0.05). Valine supplementation decreased BWG using a diet marginal in Trp, whereas it increased BWG when using a Trp sufficient diet. Piglets fed the low-CP diet with adequate levels of Val and Trp showed at least same performance compared to piglets fed the high CP reference diet. In Experiment 2, increasing dietary Val improved FI and BWG (P<0.001) and tended to improve FCR. Dietary AA excess for Ile, His and Leu reduced FI and BWG (P<0.05) and only affected FCR (P<0.01) in the 1st week of the study. Dietary level of Val and AA excess did not show interactive effects, except for FCR over the final 2 weeks of the study (P<0.05). In conclusion, an interaction exists between dietary supply of Val and Trp on the zootechnical performance of post-weaning piglets and dietary AA excess for Ile, Leu and His, reduces growth performance of piglets in low-protein diets, independent of the dietary level of Val.
Large efforts have been deployed in developing methods to estimate methane emissions from cattle. For large scale applications, accurate and inexpensive methane predictors are required. Within a livestock precision farming context, the objective of this work was to integrate real-time data on animal feeding behaviour with an in silico model for predicting the individual dynamic pattern of methane emission in cattle. The integration of real-time data with a mathematical model to predict variables that are not directly measured constitutes a software sensor. We developed a dynamic parsimonious grey-box model that uses as predictor variables either dry matter intake (DMI) or the intake time (IT). The model is described by ordinary differential equations.
Model building was supported by experimental data of methane emissions from respiration chambers. The data set comes from a study with finishing beef steers (cross-bred Charolais and purebred Luing finishing). Dry matter intake and IT were recorded using feed bins. For research purposes, in this work, our software sensor operated off-line. That is, the predictor variables (DMI, IT) were extracted from the recorded data (rather than from an on-line sensor). A total of 37 individual dynamic patterns of methane production were analyzed. Model performance was assessed by concordance analysis between the predicted methane output and the methane measured in respiration chambers. The model predictors DMI and IT performed similarly with a Lin’s concordance correlation coefficient (CCC) of 0.78 on average. When predicting the daily methane production, the CCC was 0.99 for both DMI and IT predictors. Consequently, on the basis of concordance analysis, our model performs very well compared with reported literature results for methane proxies and predictive models. As IT measurements are easier to obtain than DMI measurements, this study suggests that a software sensor that integrates our in silico model with a real-time sensor providing accurate IT measurements is a viable solution for predicting methane output in a large scale context.
An extended milking interval of 24 h (24-h milking interval (24h-MI)) constitutes the acute phase of cow adaptation to once-daily milking (ODM). A recent trial including 724 24h-MI challenges demonstrated that milk yield responses to this acute phase of ODM are highly variable (from+22% to −52% of milk yield when switching to the 24h-MI, mean=−25.3%) and that factors such as stage of lactation parity and milk yield level influenced cows’ responses but did not account for all individual variability. Additional traits related to physiological, immune and behavioural adaptation were measured on a subset (96 observations) of this data set. This study aimed to determine (1) the relationship of these traits with cows’ milk yield responses, (2) their ability – combined with previously identified traits – to help predict milk yield responses to 24h-MI (adaptive profiles). The 24h-MI challenge consisted of three successive periods: one control week of twice-daily milking (cTDM), one single day of 24h-MI and then 13 days of TDM (pTDM). Milk yield responses to the 24h-MI (corrected for effects of stage of lactation, parity, milk yield level and milk yield) were related to physiological traits measured during cTDM (milk flow rate, presence or absence of interleukin-8) and to their changes during the 24h-MI (absolute increase in milk flow rate and relative udder distension). Analysis of associations between milk yield responses, stage of lactation, parity, milk yield level, proteolysis, udder expansion and immune traits found three adaptive cow profile clusters. Cows in cluster 1 had a less compliant udder than cows in cluster 2, and they lost more milk during the 24h-MI than cluster-2 and cluster-3 cows. After resuming twice daily-milking (TDM), cluster-2 cows fully recovered the milk they had lost during the 24h-MI. On the opposite, cluster-3 cows did not recover the milk they lost, likely due to udder inflammation during cTDM, as suggested by elevated concentrations of interleukin-8 in their milk. These results combining new traits with stage of lactation, parity and milk yield level constitute a first step towards predicting individual cow responses to a 24h-MI.
Grain-rich diets often lead to subacute ruminal acidosis (SARA) impairing rumen and systemic cattle health. Recent data suggest beneficial effects of a clay mineral (CM)- based product on the rumen microbiome of cattle during SARA. This study sought to investigate whether the CM supplementation can counteract SARA-induced perturbations of the bovine systemic health. The study used an intermittent diet-induced SARA-model with eight dry Holstein cows receiving either no additive as control or CM via concentrates (n=8 per treatment). Cows received first a forage diet (Baseline) for 1 week, followed by a 1-week SARA-challenge (SARA 1), a 1-week recovery phase (Recovery) and finally a second SARA-challenge for 2 weeks (SARA 2). Cows were monitored for feed intake, reticular pH and chewing behavior. Blood samples were taken and analyzed for metabolites related to glucose and lipid metabolism as well as liver health biomarkers. In addition, a targeted electrospray ionization-liquid chromatography-MS-based metabolomics approach was carried out on the plasma samples obtained at the end of the Baseline and SARA 1 phase. Data showed that supplementing the cows’ diet with CM improved ruminating chews per regurgitated bolus by 16% in SARA 1 (P=0.01) and enhanced the dry matter intake during the Recovery phase (P=0.05). Moreover, the SARA-induced decreases in several amino acids and phosphatidylcholines were less pronounced in cows receiving CM (P≤0.10). The CM-supplemented cows also had lower concentrations of lactate (P=0.03) and biogenic amines such as histamine and spermine (P<0.01) in the blood. In contrast, the concentration of acylcarnitines with key metabolic functions was increased in the blood of treated cows (P≤0.05). In SARA 2, the CM-cows had lower concentrations of the liver enzymes aspartate aminotransferase and γ-glutamyltransferase (P<0.05). In conclusion, the data suggest that supplementation of CM holds the potential to alleviate the negative effects of high-grain feeding in cattle by counteracting multiple SARA-induced perturbations in the systemic metabolism and liver health.
The present study aimed to identify the factors that affect immediate (within 24 h after farrowing onset) postnatal piglet mortality in litters with hyperprolific sows, and investigate their associations with behaviour of postpartum sows in two different farrowing housing systems. A total of 30 sows were housed in: (1) CRATE (n=15): the farrowing crate closed (0.80×2.20 m) within a pen (2.50×1.70 m), and (2) OPEN (n=15): the farrowing crate open (0.80×2.20×1.80 m) within a pen (2.50×2.40 m) with a provision of 20 ls of hay in a rack. A total of 518 live born piglets, produced from the 30 sows, were used for data analyses during the first 24 h after the onset of parturition (T24). Behavioural observations of the sows were assessed via video analyses during T24. Total and crushed piglet mortality rates were higher in OPEN compared with CRATE (P<0.01, for both). During T24, the OPEN sows tended to show higher frequency of postural changes (P=0.07) and duration of standing (P=0.10), and showed higher frequencies of bar-biting (P<0.05) and piglet trapping (P<0.01), when compared with the CRATE sows. During T24, the mortality rates caused by crushing were correlated with the piglet trapping event (r=0.93, P<0.0001), postural changes (r=0.37, P<0.01), duration of standing (r=0.32, P<0.01) and frequency of bar-biting behaviour (r=0.51, P<0.01) of the sows (n=30). In conclusion, immediate postnatal piglet mortality, mainly due to crushing, may be associated with potential increases in frequency of postural changes, duration of standing and incidence of piglet trapping in postpartum sows in the open crate system with large litters.
Tail damage within the production of finisher pigs is an animal welfare problem. Recent research suggests that removal of known risk factors may not be enough to eliminate tail biting, especially in undocked pigs, thus a different strategy is worth investigating. This could be early detection of tail biting, using behavioural changes observed before tail damage. If these early stages of tail biting can be detected before tail damage occurs, then tail damage could be prevented by early interventions. The first step in developing such a strategy is to identify the types of behaviour changes that emerge during early stages of tail biting. Thus, the aim of the current study was to investigate whether pen level activity and object manipulation evolved differently during the last 7 days before the scoring of tail damage (day 0) for pens scored with tail damage (tail damage pens) and pens not scored with tail damage (matched control pens). The study included video recordings for twenty-four tail damage pens and thirty-two matched control pens. Activity level and object manipulation were observed the last 7 days before day 0 during the morning (0600 to 0800 h), afternoon (1600 to 1800 h) and evening (2200 to 2400 h, only activity level). Both activity level and object manipulation were analysed using generalised linear mixed effects models with a binomial distribution for activity level and a negative binomial distribution for object manipulation. The probability of being active was higher in tail damage pens compared to control pens during the afternoon the last 5 days before day 0 (P<0.001). This was seen due to a decrease in activity level in the control pens, which makes it difficult to identify future tail damage pens from this difference. Object manipulation was lower in tail damage pens compared to the control pens on all 7 days before day 0, but only in pens with undocked pigs (P<0.01). Thus, it is still unknown when this difference in object manipulation initiated. It was concluded that both activity level and object manipulation seemed related to ongoing tail biting and should be investigated through more detailed observations and for a longer time to establish the normal behaviour pattern for a particular pen. Thus, it is suggested that future research focusses on developing automatic monitoring methods for pen level activity and object manipulation and applies algorithms that establish and detect deviations from the normal behaviour pattern of the pen before tail damage.
LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle) is a generic, mechanistic model designed to quantify potential and feed-limited growth, which provides insight in the biophysical scope to increase beef production (i.e. yield gap). Furthermore, it enables identification of the bio-physical factors that define and limit growth, which provides insight in management strategies to mitigate yield gaps. The aim of this paper, third in a series of three, is to evaluate the performance of LiGAPS-Beef with independent experimental data. After model calibration, independent data were used from six experiments in Australia, one in Uruguay and one in the Netherlands. Experiments represented three cattle breeds, and a wide range of climates, feeding strategies and cattle growth rates. The mean difference between simulated and measured average daily gains (ADGs) was 137 g/day across all experiments, which equals 20.1% of the measured ADGs. The root mean square error was 170 g/day, which equals 25.0% of the measured ADGs. LiGAPS-Beef successfully simulated the factors that defined and limited growth during the experiments on a daily basis (genotype, heat stress, digestion capacity, energy deficiency and protein deficiency). The simulated factors complied well to the reported occurrence of heat stress, energy deficiency and protein deficiency at specific periods during the experiments. We conclude that the level of accuracy of LiGAPS-Beef is acceptable, and provides a good basis for acquiring insight in the potential and feed-limited production of cattle in different beef production systems across the world. Furthermore, its capacity to identify factors that define or limit growth and production provides scope to use the model for yield gap analysis.
Mineral composition and relative deposition rates in the pig’s body are used to assess the mineral net requirements for growth and input–output balances. The study aimed to examine the dynamics of changes in mineral composition and deposition rates in the empty body (EB) from birth to 140 kg BW depending on dietary protein supply. In the experiment, 66 entire male, 58 castrated and 66 female Swiss Large White pigs were used to determine body composition at birth, 10, 20 kg and at 20 kg intervals from 40 to 140 kg BW. From 20 kg BW, they had either ad libitum access to a control grower and finisher diet or a grower and finisher diet containing 80% CP, lysine, methione+cystine, threonine and tryptophan of the control diet. Each EB fraction (carcass, organs and empty intestines, blood and bile) was weighed and analyzed for water, ash, calcium, phosphorous, magnesium, potassium, sodium, copper, iron, manganese and zinc contents. Allometric relationships between the amount of each mineral in the EB and the EB weight (EBW) were fitted. The R2 of the allometric equations was above 0.92, except for copper and manganese (below 0.33), revealing the EBW as an excellent explanatory variable of the analyzed amounts. The copper and manganese composition in the EB were extremely low and variable which explain the low R2. Except for zinc, all mineral relative deposition rates decreased with increasing EBW. The amount of ash, calcium and phosphorus in the EB was not affected by the diet, but when expressed relative to body protein these minerals were increased when pigs were fed the low protein diet. This suggests an independent protein deposition and bone mineralization when animals are fed diets limiting in protein content. The diet also affected the amount of potassium in the EB which was greater when the low protein diet was fed. The gender only affected the amounts of potassium and sodium in the EB which were greater in entire males. Entire males had also greater amounts of water in the EB, which may explain the observed effect of gender on these two electrolytes. Finally, gender and dietary protein did not affect to a sufficient relevant way the body mineral composition and deposition rates in the EB, suggesting that their distinction may not be necessary to assess, on BW basis, the mineral net requirements for growth and the exported amount of minerals in input–output balances.
Trace minerals have important roles in immune function and oxidative metabolism; however, little is known about the relationships between supplementation level and source with outcomes in dairy cattle. Multiparous Holstein cows (n=48) beginning at 60 to 140 days in milk were utilized to determine the effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide (LPS) challenge. Cows were fed a basal diet meeting National Research Council (NRC) requirements except for no added zinc (Zn), copper (Cu) or manganese (Mn). After a 4-week preliminary period, cows were assigned to one of four topdress treatments in a randomized complete block design with a 2×2 factorial arrangement of treatments: (1) NRC inorganic (NRC levels using inorganic (sulfate-based) trace mineral supplements only); (2) NRC organic (NRC levels using organic trace mineral supplements (metals chelated to 2-hydroxy-4-(methythio)-butanoic acid); (3) commercial inorganic (approximately 2×NRC levels using inorganic trace mineral supplements only; and (4) commercial organic (commercial levels using organic trace mineral supplements only). Cows were fed the respective mineral treatments for 6 weeks. Treatment effects were level, source and their interaction. Activities of super oxide dismutase and glutathione peroxidase in erythrocyte lysate and concentrations of thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) in plasma were measured as indices of oxidative metabolism. Effects of treatment on those indices were not significant when evaluated across the entire experimental period. Plasma immunoglobulin G level was higher in cows supplemented with organic trace minerals over the entire treatment period; responses assessed as differences of before and after Escherichia coli J5 bacterin vaccination at the end of week 2 of treatment period were not significant. Cows were administered an intramammary LPS challenge during week 5; during week 6 cows fed commercial levels of Zn, Cu and Mn tended to have higher plasma TAC and cows fed organic sources had decreased plasma TBARS. After the LPS challenge, the extent and pattern of response of plasma cortisol concentrations and clinical indices (rectal temperature and heart rate) were not affected by trace mineral level and source. Productive performance including dry matter intake and milk yield and composition were not affected by treatment. Overall, results suggest that the varying level and source of dietary trace minerals do not have significant short-term effects on oxidative metabolism indices and clinical responses to intramammary LPS challenge in midlactation cows.