To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Shortening or omitting the dry period improves the energy balance and metabolic status of dairy cows in early lactation. Metabolic, behaviour and welfare effects throughout lactation, however, are unclear. The current paper reviews long-term metabolic and welfare consequences of short and no dry period, as well as feeding strategies and individual cow characteristics that could support in optimising management of cows with a short or no dry period. The paper will conclude with impacts of short and no dry periods at herd level and in practice. Energy balance after no or a short dry period is more positive during the complete subsequent lactation. After the initial improvement in early lactation, cows after no dry period tend to fatten and may have a too low lactation persistency to be continuously milked until the onset of the subsequent lactation. Reducing dietary energy level for cows with no dry period reduced fattening during the complete lactation but did not improve lactation persistency. Feeding a more lipogenic diet for cows with a short or no dry period did not affect the energy balance or lactation persistency during the complete lactation, although a lipogenic diet resulted in lower plasma insulin and IGF-1 concentration and greater plasma growth hormone concentration, compared with a glucogenic diet. Effects of dry period length on udder health are ambiguous, whereas short and no dry periods improved fertility in most studies. Omission of the dry period changed behaviour of cows both before and after calving, with a longer lying time and greater feed intake after calving, suggesting a better adaptation to a new lactation. Individual cow characteristics like parity, genotype, prepartum body condition score, and milk yield level determined the metabolic response of cows to a short or no dry period. In conclusion, short or no dry periods increase the energy balance in the complete lactation. Feeding strategies can be used to limit fattening of cows with no or short dry period, but the studied feeding strategies did not increase lactation persistency. Improved fertility and behavioural changes around calving suggest a better adaptation to a new lactation in case of no dry period. Customised dry period lengths for individual cows could improve metabolic status of cows at risk of a severe negative energy balance while minimising milk losses.
Small ruminants not only differ on mammary gland anatomy, milk’s properties and the amount of milk yielded comparable to those of dairy cattle, but also on the milking routine strategies and machine milking settings to maximize daily milk secretion. The udder compartment is proportionally larger in dairy sheep and goats, which requires modifications in the milking machine settings, milking procedures and allows the use of different milking strategies as they better tolerate extension of milking intervals. Depending on the breed, cisternal milk in goats varies from 70% to 90%, whereas in dairy sheep it varies from 50% to 78% of the total gland capacity. This explains why these species are commonly milked without pre-milking teat preparation, while in goats it is applied only in cases of high prevalence of intramammary infection in the herd. Recent French researchers observed that 40% of the goats presented an unbalanced udder as well as unbalanced morphology (21% to 30%) and functional milk flow (around 10% to 20% more) which could induce overmilking. In dairy sheep, selection for higher milk production increases teat angle insertion. Thus, to increase machine milk fraction, it is recommended to use either the ‘Sagi hook’ as an alternative for lifting up the ‘pendulous’ udder during milking or to perform machine stripping. There are three cluster removal strategies for small ruminants: manual, timed and milk flow driven automatic cluster removal (ACR). Automatic cluster removal reduces overmilking, improves teat condition, enables labour saving and provides a consistent milking routine in small ruminants. There are three to five main milk flow profiles in ewes and goats, which result in curves with one or two peaks (or plateau) and different patterns of the milk flow decreasing phase due to the degree of mammary gland imbalance and teat characteristics. When taking into account our current knowledge, ACR recommended take-off settings for goats are: 200 g/min+10 s delay time (DT) for a long decreasing phase or two plateau curves and 500 g/min+5 s DT for a short decreasing phase and one plateau curve. The ACR take-off settings for ewes are: 150 g/min +10 s DT for long decreasing phase and 200 g /min+5 s DT for a short decreasing phase. This review is intended to be useful for scientists and producers seeking basic knowledge of milking routines and cluster detachment settings for parlour performance and milk quality.
Colostrum plays an essential role in ensuring the survival, growth and health of piglets by providing energy, nutrients, immunoglobulins, growth factors and many other bioactive components and cells. Both colostrum yield and composition are highly variable among sows, yet mechanisms and factors that regulate colostrogenesis are not fully known. Unlike sow milk yield, sow colostrum yield is not highly determined by litter size and suckling intensity but is largely driven by sow-related factors. Colostrum synthesis is under hormonal control, with prolactin and progesterone concentrations prepartum having, respectively, positive and negative influences on colostrum yield. Less is known about the endocrine control of the end of colostrogenesis in swine, which is characterized by the closure of tight junctions in the mammary epithelium and the cessation of transfer of immunoglobulin G (IgG) into lacteal secretions. Recent studies indicate that exogenous hormones may influence colostrogenesis. Inducing parturition by injecting prostaglandin F2α on day 114 of gestation in combination with an oxytocin-like molecule reduced colostrum yield, and injection of prostaglandin F2α alone either reduced colostrum yield or had no effect. Injecting a supraphysiological dose of oxytocin to sows in the early postpartum period delayed the tightening of mammary tight junctions, thereby prolonging the colostral phase and increasing concentrations of IGF-I and IgG and IgA in early milk. The development of strategies to improve colostrum composition in swine through maternal feeding has been largely explored but very few attempts were made to increase colostrum yield. This is most likely because of the difficulty in measuring colostrum yield in swine. The fatty acid content of colostrum greatly depends on the amount of lipids provided in the sow diet during late gestation, whereas the fatty acid profile is largely influenced by the type of lipid being fed to the pregnant sow. Moreover, various ingredients that presumably have immuno-modulating effects (such as fish oil, prebiotics and probiotics) increased concentrations of IgG, IgA and/or IgM in sow colostrum when they were provided during the last weeks of gestation. Finally, there is some evidence that sow nutrition during late gestation may influence colostrum yield but this clearly warrants more research. This review emphasizes that although progress has been made in understanding the control of colostrogenesis in swine, and that strategies exist to manipulate fat and immunoglobulin contents of colostrum, ways to increase colostrum yield are still lacking.
This paper reviews the effects of extended lactation (EXT) as a strategy in dairy cattle on milk production and persistency, reproduction, milk quality, lifetime performance of the cow and finally the economic effects on herd and farm levels as well as the impact on emission of greenhouse gas at product level. Primiparous cows are able to produce equal or more milk per feeding day during EXT compared with a standard 305-d lactation, whereas results for multiparous cows are inconsistent. Cows managed for EXT can achieve a higher lifetime production while delivering milk with unchanged or improved quality properties. Delaying insemination enhances mounting behaviour and allows insemination after the cow’s energy balance has become positive. However, in most cases EXT has no effect or a non-significant positive effect on reproduction. The EXT strategy sets off a cascade of effects at herd and farm level. Thus, the EXT strategy leads to fewer calvings and thereby expected fewer diseases, fewer replacement heifers and fewer dry days per cow per year. The optimal lifetime scenario for milk production was modelled to be an EXT of 16 months for first parity cows followed by an EXT of 10 months for later lactations. Modelling studies of herd dynamics indicate a positive effect of EXT on lifetime efficiency (milk per dry matter intake), mainly originating from benefits of EXT on daily milk yield in primiparous cows and the reduced number of replacement heifers. Consequently, EXT also leads to reduced total meat production at herd level. For the farmer, EXT can give the same economic return as a traditional lactation period. At farm level, EXT can contribute to a reduction in the environmental impact of dairy production, mainly as a consequence of the reduced production of beef. A wider dissemination of the EXT concept will be supported by methods to predict which cows may be most suitable for EXT, and clarification of how milking frequency and feeding strategy through the lactation can be organised to support milk yield and an appropriate body condition at the next calving.
Historically, pre-pubertal development of the bovine mammary gland (MG) has received little attention compared to later development. Recent evidence suggests not only that this period represents a very active time in the development of the MG but also that the first 90 days of life can partially dictate future productivity of the lactating cow. The MG, often considered quiescent during early life (first 3 months), is now known to increase in size by over 60-fold in the same period. The importance of sex steroids in MG development is well classified, but a complex signaling network exists among estrogen, progesterone and other growth factors and hormones. Complicating our understanding of this developmental period further is the discovery that pre-weaning nutrition of the calf not only influences the growth of the mammary parenchyma but may also alter the way in which it responds to mammogenic stimuli. Recent data suggest that feeding calves a higher plane of nutrition improves the ability of the mammary epithelium to respond to estradiol and also alters the way in which the mammary parenchyma and fat pad communicate. It is clear that early life nutrition, although able to influence the MG, is still poorly understood mechanistically. For example, additional evidence suggests that increased feeding rates in early life alter the morphology of myoepithelial cells in the mammary epithelium. Further data have also suggested a role for other cell types, such as immune cells, in the penetration of the mammary parenchyma into the fat pad during the early life development of the MG suggesting that mammary development is not only controlled by the local tissue population (parenchyma and fat pad) but perhaps systemically by other tissue types (i.e., immune system). Understanding the roles of these various stimuli and signaling pathways as they relate to the development of the MG in early life may hold the key to unlocking the potential for the optimal development of this crucial organ and, in turn, may lead to improvements in other phases of mammary development and milk yield potential.
The use of a proteomic approach to investigate changes in the milk proteome is growing and has parralleled the increasing technological developments in proteomics moving from early investigation using a gel-based two-dimensional separation approach to more quantitative method of current focus applying chromatography and mass spectrometry. Proteomic approaches to investigate lactational performance have made substantial findings especially in the alterations in lactation during mastitis. An experimental model of Streptococcus uberis infection of the mammary gland has been used as a means to determine change not only in the milk proteome, but also in the peptidome and in the metabolome caused by the infection. Examination of the peptidome, that is the peptides of less than 25 kDa in molecular weight, demonstrated an increase in small peptides most of which were casein degradation products but also included small bioactive peptides such as mammary-associated serum amyloid A3 (MSAA3). The peptidome has also been shown to differ depending on the causative bacteria of naturally occuring mastitis. The use of a non-gel-based relative quantitative proteomic methodology has revealed major changes in the protein component of milk in mastitis. The S. uberis infection lead to increases in the concentrations of proteins such as cathelicidins, haptoglobin, MSAA3 and decreases milk content of proteins such as xanthine oxidase, butyrophilin and β-1,4-galactosyltransferase. Analysis of all protein change data identified the acute phase, coagulation and complement pathways as well as proteins related to bile acid metabolism as being most modified. Examination of the small molecular weight organic molecules of milk using a metabolomic approach identified an increase in the content in milk during mastitis of bile acids such as taurochenodeoxycholic acid. Notable changes were also found in metabolites responding to infection of the mammary gland. Carbohydrate and nucleic acid metabolites were reduced, whereas lipid and nitrogen containing metabolites were increased. The latter included increases in amino acids along with di and tri peptides, likely to be the result of casein degradation. The use of proteomics and other omic technology is in its infancy in investigation of lactational parameters, but can already provide additional insight into the changes involved in disease and will have further value in physiological and nutritional investigation of lactation.
Accumulating evidence supports that the hormone prolactin (PRL) is galactopoietic in dairy ruminants. Accordingly, the inhibition of PRL secretion by the dopamine agonists quinagolide and cabergoline causes a sharp decline in milk production and could be useful in several critical periods. First, PRL inhibition may reduce the incidence during the periparturient period of metabolic disorders caused by the abrupt increase in energy demand for milk production. Metabolic disturbances can be lessened by reducing milk output by milking once a day or incompletely in the first few days of lactation. The injection of cows with quinagolide for the first 4 days of lactation reduced milk production during the first week of lactation without any residual effects. Blood glucose and calcium concentrations were higher and β-hydroxybutyric acid concentration was lower in the quinagolide-treated cows. Second, PRL inhibition may help sick or injured lactating cows, considering that they can fall into severe negative energy balance when they are unable to consume enough feed to support their milk production. This leads to a weakened immune system and increased susceptibility to diseases. When cows were subjected to feed restriction and were treated with quinagolide, the decrease in milk production was accelerated without any residual effects. The quinagolide-treated cows had higher glucose and lower β-hydroxybutyric acid and non-esterified fatty acid concentrations than the control cows did. Third, PRL inhibition may facilitate drying-off in high-yielding cows, because they are often dried off while still producing significant quantities of milk, which delays mammary involution and increases risk of mastitis. Therefore, strategies that reduce milk production before drying-off and accelerate mammary gland involution could be an important management tool. In this context, inhibition of PRL was utilised to accelerate mammary gland dry-off. Quinagolide decreased milk production within the first day of treatment, and both quinagolide and cabergoline induced more rapid changes in several markers of mammary gland involution after drying-off. In addition, quinagolide improved the animals’ resistance to intramammary infection. These results suggest that the inhibition of PRL could be a strategy for facilitating drying-off, reducing metabolic stress during the postpartum period, and alleviating acute nutritional stress during illness without compromising the overall productivity of dairy ruminants.
The increasing lactational performance of dairy cows over the last few decades is closely related to higher nutritional requirements. The decrease in dry matter intake during the peripartal period results in a considerable mobilisation of body tissues (mainly fat reserves and muscle mass) to compensate for the prevailing lack of energy and nutrients. Despite the activation of adaptive mechanisms to mobilise nutrients from body tissues for maintenance and milk production, the increased metabolic load is still a risk factor for animal health. The prevalence of production diseases, particularly subclinical ketosis is high in the early lactation period. Increased β-hydroxybutyrate (BHB) concentrations further depress gluconeogenesis, feed intake and the immune system. Despite a variety of adaptation responses to nutrient and energy deficit that exists among dairy cows, an early and non-invasive detection of developing metabolic disorders in milk samples would be useful. The frequent and regular milking process of dairy cows creates the ability to obtain samples at any stage of lactation. Routine identification of biomarkers accurately characterising the physiological status of an animal is crucial for decisive strategies. The present overview recapitulates established markers measured in milk that are associated with metabolic health of dairy cows. Specifically, measurements of milk fat, protein, lactose and urea concentrations are evaluated. Changes in the ratio of milk fat to protein may indicate an increased risk for rumen acidosis and ketosis. The costly determination of individual fatty acids in milk creates barriers for grouping of fatty acids into saturated, mono- and polyunsaturated fatty acids. Novel approaches include the potential of mid-IR (MIR) based predictions of BHB and acetone in milk, although the latter are not directly measured, but only estimated via indirect associations of concomitantly altered milk composition during (sub)clinical ketosis. Although MIR-based ketone body concentrations in milk are not suitable to monitor the metabolic status of the individual cow, they provide an estimate of the overall herd or specific groups of animals earlier in a particular stage of lactation. Management decisions can be made earlier and animal health status improved by adjusting diet composition.
Milk production by the sow is a major factor limiting the growth and survival of her litter. Understanding the process of morphogenesis of the sow’s mammary gland and the factors that regulate mammary development are important for designing successful management tools that may enhance milk production. Primordia of the mammary glands are first observable in the porcine embryo at approximately 23 days of gestation. The glands then progress through a series of morphologically distinct developmental stages such that, at birth, each mammary gland is composed of the teat, an organized fat pad and two separate lactiferous ducts each with a few ducts branching into the fat pad. The glands continue to grow slowly until about 90 days of age when the rate of growth increases significantly. The increased rate of mammary gland growth coincides with the appearance of large ovarian follicles and an increase in circulating estrogen. After puberty, the continued growth of the gland and elongation and branching of the duct system into the fat pad takes place in response to the elevated levels of estrogen occurring as part of the estrous cycles. After conception, parenchymal mass of each gland increases slowly during early pregnancy and then grows increasingly rapidly during the final trimester. This growth is in response to estrogen, progesterone, prolactin and relaxin. Lobuloalveolar development occurs primarily during late pregnancy. By parturition, the fat pad of the mammary gland has been replaced by colostrum-secreting epithelial cells that line the lumen of the alveoli, lobules and small ducts. All mammary glands develop during pregnancy, however, the extent of development is dependent on the location of the mammary gland on the sow’s underline. The mammary glands undergo significant functional differentiation immediately before and after farrowing with the formation of colostrum and the transition through the stages of lactogenesis. Further growth of the glands during lactation is stimulated by milk removal. Individual glands may grow or transiently regress in response to the intensity of suckling during the initial days postpartum. Attempts to enhance milk production by manipulation of mammary development at stages before lactation generally have met with limited success. A more in depth understanding of the processes regulating porcine mammary gland morphogenesis at all stages of development is needed to make further progress.
Nursing piglets are entirely dependent, for their micronutrient provisions, upon in utero, colostrum and milk transfers from the dam. An adequate maternal transfer of micronutrients is all the more important during these periods which, in fact, lasts for approximately half the life cycle (conception to slaughter) of modern pigs. The present study aimed to set up a simple approach to assess the maternal perinatal transfer of vitamins and trace elements in sows. Prenatal transfer (R-u) was estimated as limited, passive or active using the ratio between pre-colostral serum concentrations of a given micronutrient in newborn piglets and corresponding pre-farrowing values in sows. Efficiency of the postnatal transfer (R-c) was estimated from the ratio between serum concentrations of post- and pre-colostral micronutrients in piglets. Data from literature (12 studies) were used for vitamins A, D, E, C, folic acid and B12, whereas vitamins B2, B3, B6 and B8 as well as Zn, Fe, Cu and Se were generated from a trial where blood sera from 20 sows, and their litter were collected during the perinatal period. In sow trial, statistical t tests were used to determine if ratios differed from 1. Prenatal transfer was active and in favour of piglets (R-u > 1, P < 0.03) for Zn and vitamins B6 and B8 (sow trial) as well as for vitamins C and B12 (literature data). This transfer was limited (R-u < 1, P < 0.01) for vitamin B2, Fe, Cu and Se (sow trial) and for vitamins A, E, D and folic acid (literature data) whereas it was passive for vitamin B3 (R-u = 1, P > 0.37). After birth, the early postnatal transfer through colostrum was active towards piglets for most micronutrients but vitamins B6 and B8 (R-c < 1, P < 0.01). Globally, the perinatal transfer (combination of R-u and R-c) was favourable to the neonatal piglets for most micronutrients except for vitamins A and D as well as Fe, Cu and Se whereas there is apparently a barrier for prenatal transfer which is not compensated by the colostrum provision to neonatal piglets. Then, post-colostral concentrations of these micronutrients in piglets remain below prenatal levels of their dam. Neonatal strategies of micronutrient provision are known for Fe (intramuscular injection) and Se (sow milk enrichment). Further studies are needed to assess the importance of the unfavourable perinatal transfer for Cu and vitamins A and D for piglet robustness later in life.
Low atmospheric pressure stunning (LAPS) is a novel approach to pre-slaughter stunning of chickens using progressive hypobaric hypoxia by the application of gradual decompression (280s cycle) according to a set of prescribed pressure curves. Low atmospheric pressure stunning produces a non-recovery state. Concerns have been raised relating to the possible pathological and welfare consequences of expansion of air in the body during LAPS. In a randomised trial, we compared the gross pathology of broilers exposed to LAPS with a control group euthanised by intravenous injection of pentobarbital sodium (60 mixed sex broilers per treatment). The birds were exposed to each treatment in triplets and all birds were subject to necropsy examination to detect and score (1 to 5, minimal to severe) haemorrhagic lesions or congestion for all major organs and cavities (e.g. air sacs, joints, ears and heart) as well as external assessment for product quality (e.g. wing tips). Behavioural data (latency to loss of posture and motionless) and chamber cycle data (temperature, humidity, pressure and oxygen availability) confirmed that LAPS had been applied in a manner representative of the commercial process. All of the organs observed were structurally intact for both treatment groups. No lesions were observed in the external ears, oral cavity, tracheal lumen, crop and air sacs of birds from either treatment group. There was no difference between treatments in the wingtips, nasal turbinates, thymus, biceps femoralis and colon. Haemorrhagic lesions were observed in the calvaria, brains, hearts and lungs of both treatment groups, but lesions in these areas were more severe in the LAPS treatment group. It was not possible to distinguish between pathological changes induced by decompression or recompression. In the barbiturate group, more severe haemorrhagic lesions were observed in the superficial pectoral muscles as well as greater congestion of the infraorbital sinuses, liver, spleens, duodenum, kidneys and gonads. These findings provide evidence that LAPS did not result in distension of the intestines and air sacs sufficient to cause changes, which were grossly visible on postmortem examination. There was also no evidence of barotrauma in the ears and sinuses. The pathological changes observed in the barbiturate treatment were as expected based on barbiturate toxicity. Low atmospheric pressure stunning appears to produce pathological changes by a variety of well-established mechanisms, and while these pathological data have limited value as welfare indicators, the results confirm that organ integrity was not compromised by the process.
Gentle handling seems to elicit positive states in sheep. The study investigated whether spatial distance alters sheep responses to brushing and whether spatial distance is influenced by reactivity. Twenty Romane ewes were assessed in three sessions: in Sessions 1 and 3, one grid separated the test animal from pen mates, with no distance between them, and in Session 2 two grids separated the test animal from pen mates by a distance of about 1.7 m. Ewes had been genetically selected for low (R−) or high (R+) behavioural reactivity to social isolation. Body postures, head orientation, ear postures, closed and half-closed eyes, tail wagging and feeding behaviour, in addition to heart rate (HR) and HR variability, as the root mean square of successive differences (RMSSD), standard deviation of all normal-to-normal (NN) intervals (SDNN), RMSSD/SDNN ratio and ratio between low-frequency (LF) and high-frequency (HF) powers (LF/HF) were assessed. Data were analysed using generalized linear models and linear mixed models. Session, genetic line and phase (pre-, brushing and post-brushing) were considered fixed effects. Increased distance in Session 2 might not have influenced ewes’ responses. Fewer changes in ear postures were noted in Session 3 than 1 (P<0.01), suggesting that ewes were more relaxed in Session 3. The RMSSD/SDNN ratio was higher mainly during brushing in Sessions 1 and 3 (P<0.05), indicating that ewes were more relaxed during brushing, and at no distance between pen mates. However, spatial distance influenced R− and R+ ewes’ responses; R+ ewes performed more asymmetric ear postures in Session 2 than 1 and 3 (P<0.01), and in Session 3 than 1 (P<0.01), indicating that spatial distance had a negative effect on R+ ewes. Low reactive ewes spent less time on horizontal ear postures in Session 2 than 1 and 3 (P<0.01), and R+ ewes spent more time on horizontal postures in Session 1 than 3 (P<0.01). Curiously, R− ewes spent more time eating and ruminating in Session 3 than 1 (P<0.01), and in Session 2 than 1 and 3 (P<0.01), whereas R+ ewes ate and ruminated more in Session 1 than 3 (P<0.05). Higher HR was found among R− ewes in Session 2 than 1 and 3, and in Session 3 than 1 (P<0.01). High reactive ewes showed higher HR in Session 1 than 3 (P<0.01). The findings suggest that the social context might influence sheep responses to gentle handling, and the effects depend on their reactivity traits.
Many local breeds have become endangered due to their substitution by high-yielding breeds. To conserve local breeds, effective development strategies need to be investigated. The aim of this study was to explore conservation and development strategies based on quantified strengths, weaknesses, opportunities and threats (SWOT) for two local cattle breeds from Northern Germany, namely the German Angler (GA) and Red Dual-Purpose cattle (RDP). The data comprised 158 questionnaires regarding both breeds’ SWOT, which were answered by 78 farmers of GA and 80 farmers of RDP. First, data were analysed using the SWOT-Analytic Hierarchy Process (AHP) method, which combines the qualitative strategic decision tool of SWOT analysis and the quantitative tool of AHP. Second, prioritised SWOT factors were discussed with stakeholders in order to form final conservation and development strategies at breed level. For GA prioritised strengths were daily gain, meat quality, milk production and the usage of new biotechnologies, weaknesses were genetic gain in milk production and inbreeding, opportunities were organic farming and breed-specific characteristics and threats were milk prices and dependency regarding the dairy business. Consequently, three conservation and development strategies were formed: (1) changing relative weights and the relevant breeding goal to drift from milk to meat, (2) increasing genetic gain and control the rate of inbreeding by the implementation of specific selection programs and (3) selection of unique and breed characteristic components on product level, that is, milk-fat and fine muscle fibers. For RDP defined strengths were robustness, high adaptability for different housing systems and a balanced dual-purpose of milk and meat, weaknesses were inbreeding, breed extinction, genomic selection with young bulls and milk yield, opportunities were organic farming and dual-purpose aspects and threats were milk and decreasing beef cattle prices. Thus, three conservation and development strategies were identified: (1) adjust relative weights and the relevant breeding goal to balance milk and meat yield, (2) increasing genetic gain and avoid extinction by implementing targeted selection programs and (3) selection of unique and breed characteristic traits on breed level, that is, environmental robustness. Quantified SWOT establish a basis for the exploration of conservation and development strategies at breed level. Explored strategies are promising even if the stakeholder approach was limited for small populations regarding a small number of stakeholder groups. The used approach reflects farmers’ individual convenience better than existing quantitative strategy decision tools on their own.
Rabbit commercial maternal lines are usually selected for litter size (LS) and paternal lines for growth rate (GR). Line OR_LS was selected by ovulation rate (OR) and LS to improve LS more efficiently. In this study, growth traits of line OR_LS were evaluated by estimating the correlated response on weaning weight (WW), slaughter weight (SW) and GR during fattening period as well as their variability (DWW, DSW and DGR, respectively). Data were analyzed using Bayesian inference methods. Heritability estimates were low for growth traits (0.09, 0.13 and 0.14 for WW, SW and GR, respectively) and negligible for growth traits variability (0.01, 0.004 and 0.01 for DWW, DSW and DGR, respectively). Moderate common litter effect ratio (c2; 0.35, 0.28 and 0.27) and low maternal effect ratio (m2; 0.11, 0.05 and 0.01) were obtained for WW, SW and GR, respectively. Both c2 and m2 were lower at slaughter than at weaning. In addition, low common litter effect and negligible maternal effect were observed for growth traits variability. Genetic correlations between LS and both growth traits and their variability were close to zero. Positive genetic correlations were observed between OR and growth traits (0.19, 0.38 and 0.36 for WW, SW and GR, respectively) as well as between OR and growth traits variability (0.35, 0.62 and 0.20 for DWW, DSW and DGR, respectively). Positive correlated responses in both periods were obtained for growth traits, WW, SW and GR (0.037, 0.156 and 0.110 kg, respectively). The correlated response found in growth traits might be due to the positive genetic correlations between OR and these traits. However, selection for OR and LS using independent culling levels did not modify the growth traits variability. Therefore, no negative consequences on growth traits can be expected in current commercial maternal lines.
Grains rich in starch constitute the primary source of energy for both pigs and humans, but there is incomplete understanding of physiological mechanisms that determine the extent of digestion of grain starch in monogastric animals including pigs and humans. Slow digestion of starch to produce glucose in the small intestine (SI) leads to undigested starch escaping to the large intestine where it is fermented to produce short-chain fatty acids. Glucose generated from starch provides more energy than short-chain fatty acids for normal metabolism and growth in monogastrics. While incomplete digestion of starch leads to underutilised feed in pigs and economic losses, it is desirable in human nutrition to maintain consistent body weight in adults. Undigested nutrients reaching the ileum may trigger the ileal brake, and fermentation of undigested nutrients or fibre in the large intestine triggers the colonic brake. These intestinal brakes reduce the passage rate in an attempt to maximise nutrient utilisation, and lead to increased satiety that may reduce feed intake. The three physiological mechanisms that control grain digestion and feed intake are: (1) gastric emptying rate; (2) interplay of grain digestion and passage rate in the SI controlling the activation of the ileal brake; and (3) fermentation of undigested nutrients or fibre in the large intestine activating the colonic brake. Fibre plays an important role in influencing these mechanisms and the extent of their effects. In this review, an account of the physiological mechanisms controlling the passage rate, feed intake and enzymatic digestion of grains is presented: (1) to evaluate the merits of recently developed methods of grain/starch digestion for application purposes; and (2) to identify opportunities for future research to advance our understanding of how the combination of controlled grain digestion and fibre content can be manipulated to physiologically influence satiety and food intake.
Estimating the feed intake of grazing herbivores is critical for determining their nutrition, overall productivity and utilization of grassland resources. A 17-day indoor feeding experiment was conducted to evaluate the potential use of Medicago sativa as a natural supplement for estimating the total feed intake of sheep. A total of 16 sheep were randomly assigned to four diets (four sheep per diet) containing a known amount of M. sativa together with up to seven forages common to typical steppes. The diets were: diet 1, M. sativa + Leymus chinensis + Puccinellia distans; diet 2, species in diet 1 + Phragmites australis; diet 3, species in diet 2 + Chenopodium album + Elymus sibiricus; and diet 4, species in diet 3 + Artemisia scoparia + Artemisia tanacetifolia. After faecal marker concentrations were corrected by individual sheep recovery, treatment mean recovery or overall recovery, the proportions of M. sativa and other dietary forages were estimated from a combination of alkanes and long-chain alcohols using a least-square procedure. Total intake was the ratio of the known intake of M. sativa to its estimated dietary proportion. Each dietary component intake was obtained using total intake and the corresponding dietary proportions. The estimated values were compared with actual values to assess the estimation accuracy. The results showed that M. sativa exhibited a distinguishable marker pattern in comparison to the other dietary forage species. The accuracy of the dietary composition estimates was significantly (P < 0.001) affected by both diet diversity and the faecal recovery method. The proportion of M. sativa and total intake across all diets could be accurately estimated using the individual sheep or the treatment mean recovery methods. The largest differences between the estimated and observed total intake were 2.6 g and 19.2 g, respectively, representing only 0.4% and 2.6% of the total intake. However, they were significantly (P < 0.05) biased for most diets when using the overall recovery method. Due to the difficulty in obtaining individual sheep recovery under field conditions, treatment mean recovery is recommended. This study suggests that M. sativa, a natural roughage instead of a labelled concentrate, can be utilized as a dietary supplement to accurately estimate the total feed intake of sheep indoors and further indicates that it has potential to be used in steppe grassland of northern China, where the marker patterns of M. sativa differ markedly from commonly occurring plant species.
The diurnal feeding patterns of dairy cows affects the 24 h robot utilisation of pasture-based automatic milking systems (AMS). A decline in robot utilisation between 2400 and 0600 h currently occurs in pasture-based AMS, as cow feeding activity is greatly reduced during this time. Here, we investigate the effect of a temporal variation in feed quality and quantity on cow feeding behaviour between 2400 and 0600 h as a potential tool to increase voluntary cow trafficking in an AMS at night. The day was allocated into four equal feeding periods (0600 to 1200, 1200 to 1800, 1800 to 2400 and 2400 to 0600 h). Lucerne hay cubes (CP = 19.1%, water soluble carbohydrate = 3.8%) and oat, ryegrass and clover hay cubes with 20% molasses (CP = 11.8%, water soluble carbohydrate = 10.7%) were offered as the ‘standard’ and ‘preferred’ (preference determined previously) feed types, respectively. The four treatments were (1) standard feed offered ad libitum (AL) throughout 24 h; (2) as per AL, with preferred feed replacing standard feed between 2400 and 0600 h (AL + P); (3) standard feed offered at a restricted rate, with quantity varying between each feeding period (20:10:30:60%, respectively) as a proportion of the (previously) measured daily ad libitum intake (VA); (4) as per VA, with preferred feed replacing standard feed between 2400 and 0600 h (VA + P). Eight non-lactating dairy cows were used in a 4 × 4 Latin square design. During each experimental period, treatment cows were fed for 7 days, including 3 days habituation and 4 days data collection. Total daily intake was approximately 8% greater (P < 0.001) for the AL and AL + P treatments (23.1 and 22.9 kg DM/cow) as compared with the VA and VA + P treatments (21.6 and 20.9 kg DM/cow). The AL + P and VA treatments had 21% and 90% greater (P < 0.001) dry matter intake (DMI) between 2400 and 0600 h, respectively, compared with the AL treatment. In contrast, the VA + P treatment had similar DMI to the VA treatment. Our experiment shows ability to increase cow feeding activity at night by varying feed type and quantity, though it is possible that a penalty to total DMI may occur using VA. Further research is required to determine if the implementation of variable feed allocation on pasture-based AMS farms is likely to improve milking robot utilisation by increasing cow feeding activity at night.
Oxidative stress occurs when oxidant production exceeds the antioxidant capacity to detoxify the reactive intermediates or to repair the resulting damage. Feed efficiency has been associated with mitochondrial function due to its impact on cell energy metabolism. However, mitochondria are also recognized as a major source of oxidants. The aim of this study was to determine lipid and protein oxidative stress markers, and gene and protein expression as well as activity of antioxidant enzymes in the liver of steers of divergent residual feed intake (RFI) phenotypes. Hereford steers (n = 111) were evaluated in post-weaning 70 days standard test for RFI. Eighteen steers exhibiting the greatest (n = 9; high-RFI) and the lowest (n = 9; low-RFI) RFI values were selected for this study. After the test, steers were managed together under grazing conditions until slaughter when they reached the slaughter body weight. At slaughter, hepatic samples were obtained, were snap-frozen in liquid nitrogen and stored at −80°C until analyses. Hepatic thiobarbituric acid reactive species and protein carbonyls were greater (P = 0.05) and hepatic 4-hydroxynonenal protein adducts tended (P = 0.10) to be greater for high- than low-RFI steers. Hepatic gene expression glutathione peroxidase 4, glutamate–cysteine ligase catalytic subunit and peroxiredoxin 5 mRNA was greater (P ≤ 0.05) and glutathione peroxidase 3 mRNA tended (P = 0.10) to be greater in low- than high-RFI steers. Hepatic protein expression and enzyme activity of manganese superoxide dismutase and glutathione peroxidase enzyme activity tended (P ≤ 0.10) to be greater for low- than high-RFI steers. High-efficiency steers (low-RFI) probably had better hepatic oxidative status which was strongly associated with greater antioxidant ability near to the oxidant production site and, therefore, reduced oxidative stress of the liver. Decreased hepatic oxidative stress would reduce maintenance requirements due to a lower protein and lipid turnover and better efficiency in the use of energy.