To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Evolution of Learning and Memory Mechanisms is an exploration of laboratory and field research on the many ways that evolution has influenced learning and memory processes, such as associative learning, social learning, and spatial, working, and episodic memory systems. This volume features research by both outstanding early-career scientists as well as familiar luminaries in the field. Learning and memory in a broad range of animals are explored, including numerous species of invertebrates (insects, worms, sea hares), as well as fish, amphibians, birds, rodents, bears, and human and nonhuman primates. Contributors discuss how the behavioral, cognitive, and neural mechanisms underlying learning and memory have been influenced by evolutionary pressures. They also draw connections between learning and memory and the specific selective factors that shaped their evolution. Evolution of Learning and Memory Mechanisms should be a valuable resource for those working in the areas of experimental and comparative psychology, comparative cognition, brain–behavior evolution, and animal behavior.
Human memory is an evolved trait, fine-tuned over generations by the process of natural selection. Using the technique of forward engineering, our laboratory has derived empirical predictions about remembering by focusing on the main criteria that drive natural selection. Memory systems must have evolved because they enhanced fitness — i.e., survival and reproduction — so we reasoned that memory’s operating characteristics likely show sensitivity to fitness dimensions. As we review in this chapter, this strategy has led to the discovery of a number of novel phenomena, some of which are among the most potent memory-enhancing techniques yet discovered in the memory field. Included in our discussion are the effects of survival processing, animacy, potential contamination from disease, and finding potential mating partners. Throughout, we consider the merits of taking an evolutionary perspective on the discovery and interpretation of mnemonic phenomena.
A popular assumption in evolutionary psychology claims that reciprocal altruism is supported by a cognitive module that helps individuals to detect and remember cheaters. Enhanced memory for cheaters would be suited to avoid social exchange situations in which we run the risk of getting exploited by others. In line with this idea, previous studies found a source memory advantage for faces of cheaters relative to faces of cooperators. However, such findings should not be interpreted uncritically. This effect can also be explained with more general cognitive mechanisms. A general preference to attend to and remember negative and unexpected information may ensure that our limited processing resources are focused on relevant information. Therefore, enhanced source memory should be found for a variety of situations, proving to be more adaptive than a mechanism exclusively focused on cheating.
Learning enables organisms to make adaptive modifications to ecological circumstances. Pavlovian conditioning is a specific form of learning that involves learning about predictive relations between events in the environment and enables animals to form associations that facilitate adaptive modifications in behavior in both appetitive and aversive contexts. Pavlovian conditioned stimuli are functionally important because they prepare organisms to interact with biologically relevant stimuli, such as potential mates, and facilitate how those interactions occur. Research with various species indicates that Pavlovian conditioning influences physiological responses that affect reproductive success. In this chapter, we review how Pavlovian conditioning results in enhanced reproductive physiological responses, increased success in fertilization, and increased numbers of offspring produced. Research has shown that animals that had a chance to learn about mating opportunities have a distinct reproductive advantage over those that did not and therefore are more likely to contribute their genes to future generations. This research informs our understanding of how Pavlovian learning is not just a proximate mechanism of behavior, but also has a role in genetic transmission and thereby contributes to the future course of evolution.
The capacity to learn and remember exists in most known animal species, which raises fascinating questions about the role of evolutionary processes. Logic suggests that processing and storing information for future use is likely to be fundamental for an animal’s survival and reproductive success. Foraging for food requires capacities to respond to cues that signal its availability and location, and store memories for future excursions; successful reproduction requires capacities to locate and choose a suitable mate; and, evading predators requires learning about and remembering cues associated with survival threats, such as the presence and location of predators; all of these capacities, either directly or indirectly, enhance reproductive success. Although logical deduction plays an important role in science, empirical tests are needed to confirm, in this case, evolutionary hypotheses about learning and memory. This book is about the ways in which evolutionary hypotheses inform the design of experiments on learning and memory, the empirical methods and tests that have been developed, and the knowledge derived from research programs that reveal relationships between learning, memory, and evolution. The contributors to each chapter provide unique insights into how evolution has influenced a broad array of learning and memory mechanisms across a diverse representation of invertebrate and vertebrate species.
We provide a brief overview of current research on the behavioral ecology of learning in insects, emphasizing the function of learning in their ability to find food, locate hosts, avoid danger, and secure mates. In addition, we outline two important issues facing the current study of insect learning. One issue is the need, not only to recognize, but also to understand the role of plasticity and variation in the expression of learning, including the impacts of circadian rhythm, intraspecific and interspecific genetic differences, sex, development and environmental context. A second issue is the vexing question of homology versus homoplasy in the underlying mechanisms of learning in insects, other invertebrates and single-celled organisms.
This chapter offers a selective review of the spatial cognitive abilities of amphibians as manifested under natural conditions and in the laboratory, and the importance of the medial pallium, the hippocampus homologue in amphibians, for those abilities. In the field, amphibians display extraordinary navigational abilities associated with breeding behavior. In the lab, amphibians are capable of navigating to goal locations using either an egocentric turn strategy or a beacon-guidance strategy. More importantly, amphibians learn map-like representations of goal locations that resemble so-called cognitive maps, an ability supported by the medial pallium. Assuming similarity between the medial pallium of extant amphibians and the medial pallial-hippocampal homologue of the stem tetrapods, the ancestors of modern amniotes, we hypothesize that the evolution of the amniote hippocampus began with a medial pallium characterized by a relatively undifferentiated cytoarchitecture and a broad role in associative learning and memory processes, which included the map-like representation of space.
Human predation not only reduces prey densities, but also induces profound phenotypical changes in prey. Changes are increasingly well documented in the context of wildlife exploitation and range from morphological and life history modifications to physiological and behavioral effects. We focus on a form of human predation that has received almost no attention until now: Predation inflicted by lethal control of nuisance, pest, and alien species. We highlight the potential consequences of phenotypical changes in target species and explain the mechanisms by which phenotypical changes can arise, with emphasis on the role of associative learning and generalization. We then present an overview of a research program examining the ways in which the invasive common myna (Acridotheres tristis), one of the most broadly distributed invasive birds globally, is changing its behavior in response to heavy trapping pressure in some areas of Australia. A series of studies demonstrate how mynas learn about novel threats. Free-ranging mynas display compensatory responses to the threats of trapping and the mechanism of change is likely to involve cognition. This work has expanded our understanding of the adaptive significance of learning and memory mechanisms in nonhumans and has informed trapping practices for pest birds in Australia. We hope the chapter will help stimulate more research into the phenotypical changes associated with lethal control for which our work can serve as a model.
Memory for our own personal experiences comprises episodic memory. Episodic memory in people is characterized by multiple events and the sequential order of such events. Here, I summarize research that suggests that rats remember multiple events and the sequential order of events. These studies focus on remembering items-in-context and the replay of episodic memories. Next, I explore connections between episodic memory and hippocampal replay. Finally, I explore open questions for future research. The approaches described here may be used to explore the evolution of cognition.
Insects demonstrate an impressive repertoire of learned behaviors and are specifically suitable for studies on evolutionary processes because of their high fecundity and short life span. In this chapter I focus on the evolutionary processes that shape learning ability in insects on the relatively short-term evolutionary scale. For cognitive traits and behavior to evolve under direct natural selection the following requirements must be met: (1) variation in cognitive ability between individuals, (2) this variation is heritable, and (3) this variation is related to fitness (reproduction or survival) in specific environments. First, I describe natural variation in learning ability and how this variation can be maintained in natural populations. Second, I discuss work on heritability of cognition, as well as related studies on artificial selection and experimental evolution. Finally, I discuss the benefits and costs of learning in relation to fitness.
It is likely that comparative psychologists, animal learning researchers, and behavior analysts agree with the general tenets of a behavior systems framework — that behavior is organized, that learning depends on a set of starting conditions that consist of the past and present state of an animal (including its evolutionary history), and that learning is influenced by the physical characteristics of the environments in which it is studied. Despite this agreement, a behavior systems framework is typically used to explain anomalous results rather than serve as the theoretical foundation for testing the generality of constructs and phenomena in the study of animal learning. In this chapter, we illustrate how a behavior systems framework, with its emphasis on situating animal learning and behavior in a functional context and measuring multiple responses, can be used in pursuit of that goal.
Pomatomus saltatrix is a high-value marine pelagic coastal fish, that is fished throughout subtropical and temperate coastal waters around the world. Despite its large economic potential, there are no global data on its genetic diversity, which could compromise the conservation of the species. The aim of this study was to analyse the genetic-evolutionary structuring of the species, with the intention of evaluating different genetic P. saltatrix stocks that may indicate potential species. Based on 157 Cytochrome C Oxidase Subunit 1 sequences, the molecular delimitation analyses of species (distance and coalescence methods), as well as the haplotype network, found profound geographic structuring related to five distinct units with high and significant FST pairwise values. The divergence of these molecular units is mostly related to the Pleistocene glacial and interglacial cycles of climatic oscillations. It is hypothesized that one ancestral lineage, adapted to cold water environments, diversified into two lineages, with one more adapted to warmer environments. The high values of global genetic diversity (π = 0.016; h = 0.96) may be related to the existing profound genetic differentiation. Due to the presence of five Molecular Operational Taxonomic Units (MOTUs) within the species it is necessary to employ different regional management strategies. Traits of low haplotype richness and shallow population contraction were identified in the MOTUs V (Venezuela and Brazil) and III (Turkey and Australia), respectively, representing conservation priorities. Other molecular markers, as well as morphological data, should be explored with the aim of defining the taxonomic status of P. saltatrix stocks.
Animal learning may play several important roles in evolution. Here we discuss how: (1) learning can provide an additional form of inheritance, (2) learning can instigate plasticity-first evolution, (3) learning can influence niche construction, and (4) learning can generate developmental bias. Evidence for these evolutionary effects of learning has accumulated rapidly over the last two decades, yet their significance for biological evolution remains poorly appreciated.
The hippocampus of mammals, birds, reptiles, and amphibians is a fundamental brain structure for certain forms of relational memory. We review here the experimental evidence indicating that the hippocampal pallium of teleost fish, like the hippocampus of land vertebrates, is involved in relational map-like spatial memory, endowing fish behavior with the capability for allocentric navigation and allowing the flexible expression of spatial memory. In addition, recent evidence suggests that the teleost fish hippocampal pallium plays an important role in the processing of the temporal dimensions of relational memory. The functional similarities in the hippocampal pallium of taxa that diverged millions of years ago suggest the possibility that some features of the hippocampal networks allowing the processing of the spatial as well the temporal dimensions of relational associative memories appeared early in vertebrate evolution and were conserved through phylogenesis.
We review a selective history of the literature on related concepts such as belongingness, selective associations, and constraints on learning, as well as evidence for general learning processes. We then review the more recent and nascent literature on adaptive memory specializations in humans, vis-a-vis general models of memory. Following this introduction, we propose two insights that resolve the tension between general processes of learning and memory, on the one hand, and adaptive specializations, on the other. In the first insight, we use the analogy of how the general processes of DNA transcription and translation produce adaptively specialized proteins that are cell- and tissue-specific to serve as a model for understanding how learning and memory processes can reflect a common process at one level of analysis (e.g., cell-molecular) and adaptive specializations at another level of analysis (e.g., neural circuitry). The second insight comes from understanding how similarities in behavioral phenomena can arise due to shared ancestry (homology) or convergent evolution (homoplasy). These insights promise to unite psychological explanations of behavior with the rest of biology.
Cognitive abilities in animals can range from simple learning mechanisms to complex mechanisms including causal reasoning, imagination, foresight, and perspective taking. These complex cognitive abilities are thought to have evolved in primates in response to socio-ecological challenges faced by their ancestors. Corvids, a group of large-brained birds, are thought to have evolved comparable cognitive abilities in response to similar socio-ecological pressures. Cephalopods, including octopus, cuttlefish, and squid, also exhibit a subset of complex cognitive abilities despite having evolved independently. Here, we discuss the evolutionary pressures that might have facilitated the emergence of complex cognition in these diverse animal groups. By identifying the cognitive similarities between diverse taxa and recognizing the likely drivers for their emergence, we can derive a more comprehensive understanding of cognitive evolution.