To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A wide variety of applications ranging from microelectronics to turbines for propulsion and power generation rely on films, coatings, and multilayers to improve performance. As such, the ability to predict coating failure - such as delamination (debonding), mud-cracking, blistering, crack kinking, and the like - is critical to component design and development. This work compiles and organizes decades of research that established the theoretical foundation for predicting such failure mechanisms, and clearly outlines the methodology needed to predict performance. Detailed coverage of cracking in multilayers is provided, with an emphasis on the role of differences in thermoelastic properties between the layers. The comprehensive theoretical foundation of the book is complemented by easy-to-use analysis codes designed to empower novices with the tools needed to simulate cracking; these codes enable not only precise quantitative reproduction of results presented graphically in the literature, but also the generation of new results for more complex multilayered systems.
This is the first comprehensive volume on nearly periodic structures and mistuned blade vibration. Alok Sinha presents fundamental concepts and state-of-the-art techniques in the analysis of free and forced response of a nearly periodic structure, weaving together his own work (covering thirty-five years of research in this field) with works by other researchers. He also discusses similarities between tools used in bladed rotor analysis and condensed matter physics. Specific subjects covered include the reasons behind mode localization, the reasons behind amplitude amplification of steady-state response, state-of-the-art computational techniques for mistuned bladed rotors including multistage rotors, identification of mistuning from measured response, vibration localization in linear atomic chains, and analysis of two-dimensional periodic structures.