To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When stressed beyond a critical stress, ductile materials such as metals and alloys display a nonlinear plastic response. This is sketched in Fig. 26.1 for a uniaxial tensile test of a smooth specimen, where some relevant terms are defined. In general, plastic yielding is gradual when resolved at typical strain levels (e.g., ∼ 10−4). A critical stress, called the yield stress, is defined, which is the stress in uniaxial tension, or compression, required to cause a small, yet finite, permanent strain that is not recovered after unloading. It is common to take this onset yield strain as ey = 0.002 = 0.2%. Some common general features of plastic flow, with reference to stress vs. strain curves, are:
The σ vs. e response is nonlinear and characterized by a decreasing intensity of strain hardening, measured by the slope dσ/de, as the strain increases. Generally, dσ/de ≥ 0.
Unloading is nearly elastic.
Plastic deformation of nonporous metals is essentially incompressible, i.e., volume preserving. A discussion of the physical basis for plastic deformation in subsequent chapters will explain why this is so.
As noted, a schematic stress-strain curve during uniaxial loading and unloading of an elastoplastic material is shown in Fig. 26.1. The initial yield stress is Y (later terms such as σy will be used to denote yield stress). Note that the yield stress is now ideally represented as a stress level at which an abrupt transition from linear, purely elastic, to nonlinear, elastic-plastic deformation occurs.
Fundamental concepts concerning the micromechanics of crystalline plasticity are reviewed in this chapter. An overview of deformation mechanisms is given for crystalline materials that possess grain sizes that are said to be “traditional,” i.e., larger than about 2 µm in diameter. Some brief comments are made about the trends in deformation mechanisms when the grain sizes are much below this range (nanograins).
Early Observations
In a series of articles published between 1898 and 1900 Ewing and Rosenhain summarized their metallographic studies of deformed polycrystalline metals. The conclusion they reached concerning the mechanisms of plastic deformation provided a remarkably accurate picture of crystalline plasticity. Figure 27.1 is a schematic diagram, including some surrounding text, taken from their 1900 overview article. Figure 27.2 is one of their many excellent optical micrographs of deformed polycrystalline metals; the particular micrograph in Fig. 27.2 is of polycrystalline lead. They identified the steps a-e in Fig. 27.1 as “slip-steps” caused by the emergence of “slip bands,” which formed along crystallographic planes, at the specimen surfaces (thereby coining these two well-known phrases).
Traces of the crystalline slip planes were indicated by the dashed lines. The line labeled C was indicated by them to be a grain boundary separating two grains; the grains, they concluded, were crystals with a more or less homogeneous crystallographic orientation. Slip steps corresponding to the diagram of Fig. 27.1 are clearly visible in the micrograph of Fig. 27.2.
In a micropolar continuum the deformation is described by the displacement vector and an independent rotation vector. The rotation vector specifies the orientation of a triad of director vectors attached to each material particle. A particle (material element) can experience a microrotation without undergoing a macrodisplacement. An infinitesimal surface element transmits a force and a couple vector, which give rise to nonsymmetric stress and couple-stress tensors. The former is related to a nonsymmetric strain tensor and the latter to a nonsymmetric curvature tensor, defined as the gradient of the rotation vector. This type of the continuum mechanics was originally introduced by Voigt (1887) and the brothers Cosserat (1909). In a simplified micropolar theory, the so-called couple-stress theory, the rotation vector is not independent of the displacement vector, but related to it in the same way as in classical continuum mechanics.
The physical rationale for the extension of the classical to micropolar and couplestress theory was that the classical theory was not able to predict the size effect experimentally observed in problems which had a geometric length scale comparable to material's microstructural length, such as the grain size in a polycrystalline or granular aggregate. For example, the apparent strength of some materials with stress concentrators such as holes and notches is higher for smaller grain size; for a given volume fraction of dispersed hard particles, the strengthening of metals is greater for smaller particles; the bending and torsional strengths are higher for very thin beams and wires.
In this chapter we consider the behavior of essentially 2D membranes. The membranes may be linear or nonlinear and are generally considered to undergo arbitrarily large deformations. More specifically, the membranes considered here are modeled after biological membranes such as those that comprise cell walls or the layers that exist within biomineralized structures, e.g., shells or teeth. The discussion is preliminary and meant to provide a brief introduction to the basic concepts involved in the constitutive modeling of such structures.
Biological Membranes
Figure 33.1a illustrates an idealized view of the red blood cell that shows its hybrid structure consisting of an outer bilipid membrane and an attached cytoskeleton; Fig. 33.1b shows a micrograph of a section of the cytoskeleton that is illustrated schematically in Fig. 33.1a. The cell membrane is a hybrid, i.e., composite structure consisting of an outer bilipid layer that is supported (i.e., reinforced) by a network attached to it on the cytoplasmic side, which is on the inside of the cell. The cytoskeleton is built up from mostly tetramers, and higher order polypeptides, of the protein spectrin attached at actin nodes. We note that the spectrin network has close to a sixfold nodal coordination. It has been known that the nonlinear elastic properties of the membrane depend sensitively on the details of the topology that includes, inter alia, nodal coordination, spectrin segment length, and the statistical distribution of such topological parameters.