To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Throughout this book references have been made to results derived from the theory of complex variables. This theory thus becomes an integral part of the mathematics appropriate to physical applications. Indeed, so numerous and widespread are these applications that the whole of the next chapter is devoted to a systematic presentation of some of the more important ones and a summary of some of the others. This current chapter develops the general theory on which these applications are based. The difficulty with it, from the point of view of a book such as the present one, is that the underlying basis has a distinctly pure mathematics flavor.
Thus, to adopt a comprehensive rigorous approach would involve a large amount of groundwork in analysis, for example formulating precise definitions of continuity and differentiability, developing the theory of sets and making a detailed study of boundedness. Instead, we will be selective and pursue only those parts of the formal theory that are needed to establish the results used in the next chapter and elsewhere in this book.
In this spirit, the proofs that have been adopted for some of the standard results of complex variable theory have been chosen with an eye to simplicity rather than sophistication. This means that in some cases the imposed conditions are more stringent than would be strictly necessary if more sophisticated proofs were used; where this happens the less restrictive results are usually stated as well.
It is a remarkable aspect of the “unreasonable effectiveness of mathematics in the natural sciences” (Wigner 1960) that a handful of equations are sufficient to describe mathematically a vast number of physically disparate phenomena, at least at some level of approximation. Key reasons are the isotropy and uniformity of space-time (at least locally), the attendant conservation laws, and the useful range of applicability of linear approximations to constitutive relations.
After a very much abbreviated survey of the principal properties of vector fields, we present a summary of these fundamental equations and associated boundary conditions, and then describe several physical contexts in which they arise. The initial chapters of a book on any specific discipline give a far better derivation of the governing equations for that discipline than space constraints permit here. Our purpose is, firstly, to remind the reader of the meaning accorded to the various symbols in any specific application and of the physics that they describe and, secondly, to show the similarity among different phenomena.
The final section of this chapter is a very simple-minded description of the method of eigenfunction expansion systematically used in many of the applications treated in this book. The starting point is an analogy with vectors and matrices in finite-dimensional spaces and the approach is purposely very elementary; a “real” theory is to be found in Part III of the book.
Green's functions permit us to express the solution of a non-homogeneous linear problem in terms of an integral operator of which they are the kernel. We have already presented in simple terms this idea in §2.4. We now give a more detailed theory with applications mainly to ordinary differential equations. The next chapter deals with Green's functions for partial differential equations.
The determination of a Green's function requires the solution of a problem similar to (although somewhat simpler than) the original one, but the effort required is balanced by several advantages. In the first place, and at the most superficial level, once the Green's function G is known, it is unnecessary to solve the problem ex novo for every new set of data: it is sufficient to allow G to act on the new data to have the solution directly. Secondly, and most importantly for our purposes, Green's function theory provides a foundation for the various eigenfunction expansion and integral transform methods used in Part I of this book. Thirdly, even if the Green's function cannot be determined explicitly, one can base on it the powerful boundary integral numerical method outlined in §16.1.3 of the next chapter. Furthermore, once an expression for the solution of a problem – even if not fully explicit – is available, it becomes possible to deduce several important features of it, including bounds existence, uniqueness and others.
In many ways the sphere is the prototypical three-dimensional body and the consideration of fields in the presence of spherical boundaries sheds light on several features of more general three-dimensional cases.
In all the examples of this chapter extensive use is made of expansions in series of Legendre polynomials, for axi-symmetric problems, or spherical harmonics, for the general three-dimensional case. After a review of the polar coordinate system, we begin with a summary of the properies of these functions which are dealt with in greater detail in Chapters 13 and 14, respectively. While the axi-symmetric situation is somewhat simpler, it is also contained as a special case in the general three-dimensional one and it is therefore expedient to treat it as a special case of the latter.
We start with the general solution of the Laplace and Poisson equations (§7.3) and apply it to several axisymmetric (§§7.4 and 7.5) and non-axisymmetric situations. In all these cases the radial part of the solution consists of powers of r. The examples in the second part of the chapter (§7.13 and §7.14) deal with the scalar Helmholtz equation, for which the radial dependence is expressed in terms of spherical Bessel functions, the fundamental properties of which are summarized in §7.12. The last four sections deal with problems involving vector fields and vector harmonics.
This chapter collects in a simplified form some ideas and techniques extensively used in Part I of the book. This material will be revisited in greater detail in later chapters, but the brief summary given here may be helpful to readers who do not have the time or the inclination to tackle the more extensive treatments.
§2.1 continues the considerations of the final section of the previous chapter and further explains the fundamental idea underlying the method of eigenfunction expansions. While this method may be seen as an extension of the elementary “separation of variables” procedure (cf. §3.10), the geometric view advocated here provides a powerful aid to intuition and should greatly facilitate an understanding of “what is really going on” in most of the applications of Part I; the basis of the method is given in some detail in Chapters 19 and 21 of Part III.
§2.2 is a reminder of a useful method to solve linear non-homogeneous ordinary differential equations. Here the solution to some equations that frequently arise in the applications of Part I is derived. A more general way in which this technique may be understood is through its connection with Green's functions. This powerful idea is explained in very simple terms in §2.4 and, in greater detail, in Chapters 15 and 16.
Green's functions make use of the notion of the so-called “δ-function,” the principal properties of which are summarized in §2.3. A proper theory for this and other generalized functions is presented in Chapter 20.