To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book is about Lagrangians and Hamiltonians. To state it more formally, this book is about the variational approach to analytical mechanics. You may not have been exposed to the calculus of variations, or may have forgotten what you once knew about it, so I am not assuming that you know what I mean by, “the variational approach to analytical mechanics.” But I think that by the time you have worked through the first two chapters, you will have a good grasp of the concept.
We being with a review of introductory concepts and an overview of background material. Some of the concepts presented in this chapter will be familiar from your introductory and intermediate mechanics courses. However, you will also encounter several new concepts that will be useful in developing an understanding of advanced analytical mechanics.
Kinematics
A particle is a material body having mass but no spatial extent. Geometrically, it is a point. The position of a particle is usually specified by the vector r from the origin of a coordinate system to the particle. We can assume the coordinate system is inertial and for the sake of familiarity you may suppose the coordinate system is Cartesian. See Figure 1.1.
The calculus of variations is a branch of mathematics which considers extremal problems; it yields techniques for determining when a particular definite integral will be a maximum or a minimum (or, more generally, the conditions for the integral to be “stationary”). The calculus of variations answers questions such as the following.
• What is the path that gives the shortest distance between two points in a plane? (A straight line.)
• What is the path that gives the shortest distance between two points on a sphere? (A geodesic or “great circle.”)
• What is the shape of the curve of given length that encloses the greatest area? (A circle.)
• What is the shape of the region of space that encloses the greatest volume for a given surface area? (A sphere.)
The technique of the calculus of variations is to formulate the problem in terms of a definite integral, then to determine the conditions under which the integral will be maximized (or minimized). For example, consider two points (P1 and P2)inthe x–y plane. These can be connected by an infinite number of paths, each described by a function of the form y = y(x). Suppose we wanted to determine the equation y = y(x) for the curve giving the shortest path between P1 and P2.