To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A bipolar junction transistor (BJT) consists of two p–n junctions with three terminals. The device comprises three different doped layers. These are alternating p, n, and p layers or n, p, and n layers. The first type of device is called a pnp BJT, while the second device is an npn BJT. The first layer is called the emitter. The second layer is called the base and the third layer is called the collector. Thus for a pnp BJT, the emitter and collector regions are p-type while the base is n-type. The two p–n junctions are then formed between the emitter and base and collector and base. The vast majority of BJT applications are in analog electronics, but BJTs can also be employed in digital circuitry.
BJT operation
A BJT can be used in several circuit configurations. In most applications the input signal is across two of the BJT leads while the output signal is extracted from a second pair of leads. Since there are only three leads for a BJT, one of the leads must be common to both the input and the output circuitry. Hence we call the different circuit configurations common emitter, common base, and common collector to identify the lead common to both the input and the output. These configurations are shown in Fig. 4.1. The most commonly employed configuration is the common emitter configuration.
A BJT can be biased into one of four possible modes. These are saturation, active, inverted, and cutoff.
Solid state devices and their associated circuits used in wireless systems operate from the ultra-high frequency (UHF) to millimeter-wave frequencies. Each system requires various RF functionalities such as switching, amplification, mixing, filtering, sampling, dividing, and combining. Some of these functions are produced using a mixture of active and passive components. The active components are typically transistors, primarily FETs and BJTs.
The power amplifier is the critical portion of the RF front end in a wireless telecommunications system. The two most prevalent applications of power amplifiers in wireless systems are in cellular telephones and base stations. Power amplifier performance depends to some extent on some or all of the following: power, gain, efficiency, linearity, reliability, and thermal management issues. Any one of these specifications can be traded off against any other one. Additionally, none of these issues is solely dependent upon the device itself. For example, reliability and thermal management depend upon packaging and bonding in addition to their dependence on the circuit elements. The performance attributes are also coupled. The higher the device output power the more important thermal management becomes. Thus optimization for one parameter often impacts another device parameter that in turn may require different optimization. In the first part of this chapter we will discuss some of the performance metrics and examine how they vary with device type and design when used in power amplifiers. In addition to providing high power, the frequency of operation of a power transistor used in wireless systems must be high. Therefore, transistors must be optimized to deliver high output power at high frequency.
Central to the entire discipline of quantum optics, as should be evident from the preceding chapters, is the concept of the photon. Yet it is perhaps worthwhile to pause and ask: what is the evidence for the existence of photons? Most of us first encounter the photon concept in the context of the photo-electric effect. As we showed in Chapter 5, the photo-electric effect is, in fact, used to indirectly detect the presence of photons – the photo-electrons being the entities counted. But it turns out that some aspects of the photo-electric effect can be explained without introducing the concept of the photon. In fact, one can go quite far with a semiclassical theory in which only the atoms are quantized with the field treated classically. But we hasten to say that, for a satisfactory explanation of all aspects of the photo-electric effect, the field must be quantized. As it happens, the other venerable “proof” of the existence of photons, the Compton effect, can also be explained without quantized fields.
In an attempt to obtain quantum effects with light, Taylor, in 1909, obtained interference fringes in an experiment with an extremely weak source of light. His source was a gas flame and the emitted light was attenuated by means of screens made of smoked glass.
Quantum optics is one of the liveliest fields in physics at present. While it has been a dominant research field for at least two decades, with much graduate activity, in the past few years it has started to impact the undergraduate curriculum. This book developed from courses we have taught to final year undergraduates and beginning graduate students at Imperial College London and City University of New York. There are plenty of good research monographs in this field, but we felt that there was a genuine need for a straightforward account for senior undergraduates and beginning postgraduates, which stresses basic concepts. This is a field which attracts the brightest students at present, in part because of the extraordinary progress in the field (e.g. the implementation of teleportation, quantum cryptography, Schrödinger cat states, Bell violations of local realism and the like). We hope that this book provides an accessible introduction to this exciting subject.
Our aim was to write an elementary book on the essentials of quantum optics directed to an audience of upper-level undergraduates, assumed to have suffered through a course in quantum mechanics, and for first-or second-year graduate students interested in eventually pursuing research in this area. The material we introduce is not simple, and will be a challenge for undergraduates and beginning graduate students, but we have tried to use the most straightforward approaches. Nevertheless, there are parts of the text that the reader will find more challenging than others.
“All information is physical”, the slogan advocated over many years by Rolf Landauer of IBM, has recently led to some remarkable changes in the way we view communications, computing and cryptography. By employing quantum physics, several objectives that were thought impossible in a classical world have now proven to be possible. Quantum communications links, for example, become impossible to eavesdrop without detection. Quantum computers (were they to be realized) could turn some algorithms that are labelled “difficult” for a classical machine, no matter how powerful, into ones that become “simple”. The details of what constitutes “difficult” and what “easy” are the subject of mathematical complexity theory, but an example here will illustrate the point and the impact that quantum information processors will have on all of us. The security of many forms of encryption is predicated on the difficulty of factoring large numbers. Finding the factors of a 1024-digit number would take longer than the age of the universe on a computer designed according to the laws of classical physics, and yet can be done in the blink of an eye on a quantum computer were it to have a comparable clock speed. But only if we can build one, and that's the challenge! No one has yet realized a quantum register of the necessary size, or quantum gates with the prerequisite accuracy. Yet it is worth the chase, as a quantum computer with a modest-sized register could out-perform any classical machine.
Over the past three decades or so, experiments of the type called Gedanken have become real. Recall the Schrödinger quote from Chapter 8: “… we never experiment with just one electron or atom or (small) molecule.” This is no longer true. We can do experiments involving single atoms or molecules and even on single photons, and thus it becomes possible to demonstrate that the “ridiculous consequences” alluded to by Schrödinger are, in fact, quite real. We have already discussed some examples of single-photon experiments in Chapter 6, and in Chapter 10 we shall discuss experiments performed with single atoms and single trapped ions. In the present chapter, we shall elaborate further on experimental tests of fundamentals of quantum mechanics involving a small number of photons. By fundamental tests we mean tests of quantum mechanics against the predictions of local realistic theories (i.e. hidden variable theories). Specifically, we discuss optical experiments demonstrating violations of Bell's inequalities, violations originally discussed by Bell in the context of two spin-one-half particles. Such violations, if observed experimentally, falsify local realistic hidden-variable theories. Locality refers to the notion, familiar in classical physics, that there cannot be a causal relationship between events with space-like separations. That is, the events cannot be connected by any signal moving at, or less than, the speed of light; i.e. the events are outside the light-cone. But in quantum mechanics, it appears that nonlocal effects, effects seemly violating the classical notion of locality in a certain restricted sense, are possible.
“The word ‘classical’ means only one thing in science: it's wrong!”
We have previously emphasized the fact that all states of light are quantum mechanical and are thus nonclassical, deriving some quantum features from the discreteness of the photons. Of course, in practice, the nonclassical features of light are difficult to observe. (We shall use “quantum mechanical” and “nonclassical” more or less interchangeably here.) Already we have discussed what must certainly be the most nonclassical of all nonclassical states of light – the single-photon state. Yet, as we shall see, it is possible to have nonclassical states involving a very large number of photons. But we need a criterion for nonclassicality. Recall that in Chapter 5 we discussed such a criterion in terms of the quasi-probability distribution known as the P function, P(α). States for which P(α) is positive everywhere or no more singular than a delta function, are classical whereas those for which P(α) is negative or more singular than a delta function are nonclassical. We have shown, in fact, that P(α) for a coherent state is a delta function, and Hillery has shown that all other pure states of the field will have functions P(α) that are negative in some regions of phase space and are more singular than a delta. It is evident that the variety of possible nonclassical states of the field is quite large.
At the end of the preceding chapter, we showed that the photon number states |n〉 have a uniform phase distribution over the range 0 to 2π. Essentially, then, there is no well-defined phase for these states and, as we have already shown, the expectation value of the field operator for a number state vanishes. It is frequently suggested (see, for example, Sakurai) that the classical limit of the quantized field is the limit in which the number of photons becomes very large such that the number operator becomes a continuous variable. However, this cannot be the whole story since the mean field 〈n|Êx|n〉 = 0 no matter how large the value of n. We know that at a fixed point in space a classical field oscillates sinusoidally in time. Clearly this does not happen for the expectation value of the field operator for a number state. In this chapter we present a set of states, the coherent states, which do give rise to a sensible classical limit; and, in fact, these states are the “most classical” quantum states of a harmonic oscillator, as we shall see.
Eigenstates of the annihilation operator and minimum uncertainty states
In order to have a non-zero expectation value of the electric field operator or, equivalently, of the annihilation and creation operators, we are required to have a superposition of number states differing only by ±1.
In this chapter, we discuss two more experimental realizations of quantum optical phenomena, namely the interaction of an effective two-level atom with a quantized electromagnetic field in a high Q microwave cavity, the subject usually referred to as cavity QED, or sometimes CQED, and in the quantized motion of a trapped ion. Strictly speaking, these experiments are not optical, but they do realize interactions of exactly the type that are of interest in quantum optics, namely the Jaynes–Cummings interaction between a two-level system (an atom) and a bosonic degree of freedom, a single-mode cavity field in the case of a microwave cavity, and a vibrational mode of the center-of-mass motion of a trapped ion, the quanta being phonons in this case. We shall begin with a description of the useful properties of the so-called Rydberg atoms that are used in the microwave CQED experiments, proceed to discuss some general considerations of the radiative behavior of atoms in cavities, the CQED realization of the Jaynes–Cummings model, and then discuss the use of the dispersive, highly off-resonant, version of the model to generate superpositions of coherent states, i.e. the Schrödinger cat states of the type discussed in Chapters 7 and 9 for traveling wave optical fields but this time for a microwave cavity field. Finally, we discuss the realization of the Jaynes–Cummings interaction in the vibrational motion of a trapped ion.
So far, we have discussed closed systems involving a single quantized mode of the field interacting with atoms, as for example in the Jaynes–Cummings model in Chapter 4. As we saw in this model, the transition dynamics are coherent and reversible: the atom and field mode exchange excitation to and fro without loss of energy. As we add more modes for the atom to interact with, the coherent dynamics become more complicated as the relevant atom–field states come in and out of phase and beat together to determine the total state occupation probabilities. As time goes on, these beats get out of phase, leading to an apparent decay of the initial state occupation probability. But at later times, the beating eigenfrequencies get back in phase in a manner rather reminiscent of the Jaynes–Cummings revival discussed earlier in this book, and this leads to a partial recurrence or revival of the initial state probability. The time scale for this partial revival depends on the number of participating electromagnetic field modes and as these increase to the level appropriate for an open system in free space the recurrence disappears off to the remote future, and the exponential decay law appropriate for decay is recovered as an excellent approximation.
We have already discussed the origin of spontaneous emission and the Einstein A coefficient using perturbation theory in Chapter 4.