To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dedicated to a new class of wideband antenna, significantly developed over the past two decades, this book is the ultimate reference on magnetoelectric dipole antennas. The author is world-renowned for his pioneering work on antennas and has continuously developed the magnetoelectric dipole antenna since 2006. With contributions from the author and his students as well as results from research groups worldwide, the development of this novel antenna is fully captured. The theory and design are presented step-by-step, using simple technical explanations, making the contents accessible to readers without specialized training in antenna designs. Including the various applications of the antenna such as communications, global positioning, sensing, radar, medical imaging, and IoT, this book endeavors to demonstrate the versatility and interdisciplinarity of the antennas.
Major techniques for enhancing the bandwidth of magnetoelectric (ME) dipoles available in the literature are reviewed and discussed. Designs with single-input port and differential input ports are reported. Hopefully, it can help the readers to appreciate the beauty of these interesting designs and inspire innovative designs for future applications.
In this chapter, techniques for size reduction of the magnetoelectric dipole available in the literature are reviewed. The relative advantages of employing the folded patch technique, dielectric-loaded method, and the metamaterial-loaded approach are compared. Designs with single-input port and differential input ports are also reviewed. Hopefully, possible new techniques will be achieved by readers after reviewing all these interesting designs.
The performance of the basic linearly polarized magnetoelectric dipole is reviewed in detail to prepare the readers to appreciate other sophisticated designs in the chapters to follow. A new equivalent circuit of the antenna is given, which is different from the previous one proposed in the literature. The current density distributions on the antenna surfaces are provided to help understand the operating principle of the magnetoelectric antenna. The effect of ground plane size and sidewall height on the radiation patterns is given. Finally, a design guideline is suggested.
Substantial amount of work on the development of ME dipoles has been published by the originator’s group and other researchers and scholars over the past decade. It is now the appropriate time to review those findings and put those useful designs into appropriate perspectives. After providing the necessary background in understanding the importance of the ME dipoles in this introductory chapter, the detailed design guideline and performance of various ME dipoles with different characteristics will be presented and discussed in the chapters to follow.
Various feeding techniques and antenna structures for achieving dual-polarized and circularly polarized ME dipoles will be reviewed. Since some circularly polarized ME dipoles can be developed from dual-polarized ME dipoles, these two classes of ME dipoles are considered and reviewed together here.
The development of linearly polarized magnetoelectric (ME) dipoles operated at lower microwave frequencies is reviewed. Magnetoelectric dipoles can be fabricated at low costs, as they are purely made of metal plates at a few GHz range. Designs with modified L-shaped probe feeds for various purposes are first presented. Magnetoelectric dipoles with modified dipole shapes and feeds for enabling the antennas to be d.c. grounded are summarized. The aperture coupling technique was widely applied for the designs of microstrip antennas. Magnetoelectric dipoles with aperture-coupled feeds were also proposed in the literature. Their characteristics are presented. Differentially fed ME dipoles are also reviewed. The performance of ME dipoles for MIMO systems is discussed, which is of topical interest for 5G applications. Some recent applications of linearly polarized ME dipoles in different array environments are also presented.
A comprehensive review on using different transmission lines for feeding ME dipole antennas and arrays is presented, including the SIW, ridge gap waveguide, packaged microstrip line, and substrate-integrated coaxial line feeds. In addition, the developments of low profile of ME dipole arrays, filtering ME dipoles, and all-metal ME dipole arrays for high-power applications are summarized. Some other recent applications are briefly reported. Hopefully, our readers can appreciate the attractiveness of the ME dipoles for future wireless applications at millimeter-wave and terahertz frequencies.
Dedicated to a new class of wideband antenna, significantly developed over the past two decades, this book is the ultimate reference on magnetoelectric dipole antennas. The author is world-renowned for his pioneering work on antennas and has continuously developed the magnetoelectric dipole antenna since 2006. With contributions from the author and his students as well as results from research groups worldwide, the development of this novel antenna is fully captured. The theory and design are presented step-by-step, using simple technical explanations, making the contents accessible to readers without specialized training in antenna designs. Including the various applications of the antenna such as communications, global positioning, sensing, radar, medical imaging and IoT, this book endeavours to demonstrate the versatility and interdisciplinary of the antennas. Helping readers to develop sophisticated antennas with this thorough coverage on magnetoelectric dipole antennas, this is the ideal reference for graduate students, researchers, and electrical engineers.
There are four forces in our universe. Two act only at the very smallest scales and one only at the very biggest. For everything inbetween, there is electromagnetism. The theory of electromagnetism is described by four gloriously simple and beautiful vector calculus equations known as the Maxwell equations. These are the first genuinely fundamental equations that we meet in our physics education and they survive, essentially unchanged, in our best modern theories of physics. They also serve as a blueprint for what subsequent laws of physics look like. This textbook takes us on a tour of the Maxwell equations and their many solutions. It starts with the basics of electric and magnetic phenomena and explains how their unification results in waves that we call light. It then describes more advanced topics such as superconductors, monopoles, radiation, and electromagnetism in matter. The book concludes with a detailed review of the mathematics of vector calculus.
Stationary charges give rise to electric fields. Moving charges give rise to magnetic fields. In this chapter, we explore how this comes about, starting with currents in wires which give rise to a magnetic field wrapping the wire.
In this chapter, we rewrite the Maxwell equations yet again, this time in the language of actions and Lagrangians that we introduced in the first book in this series. This provides many new perspectives on electromagnetism. Among the pay-offs are a deeper understanding, via Noether’s theorem, of the energy and momentum carried by electromagnetism fields. This will also allow us to explore a number of deeper ideas, including superconductivity, the Higgs mechanism, and topological insulators.
There are four forces in our universe. Two act only at the very smallest scales and one only at the very biggest. For everything inbetween, there is electromagnetism. The theory of electromagnetism is described by four gloriously simple and beautiful vector calculus equations known as the Maxwell equations. These are the first genuinely fundamental equations that we meet in our physics education and they survive, essentially unchanged, in our best modern theories of physics. They also serve as a blueprint for what subsequent laws of physics look like.
This textbook takes us on a tour of the Maxwell equations and their many solutions. It starts with the basics of electric and magnetic phenomena and explains how their unification results in waves that we call light. It then describes more advanced topics such as superconductors, monopoles, radiation, and electromagnetism in matter. The book concludes with a detailed review of the mathematics of vector calculus.