To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As introduced in Chapter 4, setting up a learning problem requires the selection of an inductive bias, which consists of a model class and a training algorithm. By the no-free-lunch theorem, this first step is essential in order to make generalization possible. A trained model generalizes if it performs well outside the training set, on average with respect to the unknown population distribution.
As discussed in Chapter 2, learning is needed when a “physics”-based mathematical model for the data generation mechanism is not available or is too complex to use for design purposes. As an essential benchmark setting, this chapter discusses the ideal case in which an accurate mathematical model is known, and hence learning is not necessary. As in large part of machine learning, we specifically focus on the problem of prediction. The goal is to predict a target variable given the observation of an input variable based on a mathematical model that describes the joint generation of both variables. Model-based prediction is also known as inference.
Previous chapters have formulated learning problems within a frequentist framework. Frequentist learning aims to determine a value of the model parameter that approximately minimizes the population loss. Since the population loss is not known, this is in practice done by minimizing an estimate of the population loss based on training data – the training loss .