To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This introductory textbook provides students with a system-level perspective and the tools they need to understand, analyze and design digital systems. Going beyond the design of simple combinational and sequential modules, it shows how such modules are used to build complete systems, reflecting real-world digital design. All the essential topics are covered, including design and analysis of combinational and sequential modules, as well as system timing and synchronization. It also teaches how to write VHDL-2008 HDL in a productive and maintainable style that enables CAD tools to do much of the tedious work. A complete introduction to digital design is given through clear explanations, extensive examples and online VHDL files. The teaching package is completed with lecture slides, labs and a solutions manual for instructors. Assuming no previous digital knowledge, this textbook is ideal for undergraduate digital design courses that will prepare students for modern digital practice.
Advanced nanostructured materials such as organic and inorganic micro/nanostructures are excellent building blocks for electronics, optoelectronics, sensing, and photovoltaics because of their high-crystallinity, long aspect-ratio, high surface-to-volume ratio, and low dimensionality. However, their assembly over large areas and integration in functional circuits are a matter of intensive investigation. This Element provides detailed description of various technologies to realize micro/nanostructures based large-area electronics (LAE) devices on rigid or flexible/stretchable substrates. The first section of this Element provides an introduction to the state-of-the-art integration techniques used to fabricate LAE devices based on different kind of micro/nanostructures. The second section describes inorganic and organic micro/nanostructures, including most common and promising synthesis procedures. In the third section,different techniques are explained that have great potential for integration of micro/nanostructures over large areas. Finally, the fourth section summarizes important remarks about LAE devices based on micro/nanostructures, and future directions.
Discover the nonlinear methods and tools needed to design real-world microwave circuits with this tutorial guide. Balancing theoretical background with practical tools and applications, it covers everything from the basic properties of nonlinear systems such as gain compression, intermodulation and harmonic distortion, to nonlinear circuit analysis and simulation algorithms, and state-of-the-art equivalent circuit and behavioral modeling techniques. Model formulations discussed in detail include time-domain transistor compact models and frequency-domain linear and nonlinear scattering models. Learn how to apply these tools to designing real circuits with the help of a power amplifier design example, which covers all stages from active device model extraction and the selection of bias and terminations, through to performance verification. Realistic examples, illustrative insights and clearly conveyed mathematical formalism make this an essential learning aid for both professionals working in microwave and RF engineering and graduate students looking for a hands-on guide to microwave circuit design.
Focusing on the core topics of radio frequency integrated circuits (RFICs) and system design, this textbook provides the in-depth coverage and detailed mathematical analyses needed to gain a thorough understanding of the subject. Throughout, theory is linked to practice with real-world application examples; practical design guidance is also offered, covering the pros and cons of various topologies, and preparing students for future work in industry. Written for graduate courses on RFICs, this uniquely intuitive and practical book will also be of value to practising RFIC and system designers. Key topics covered include RF components, signals and systems, two-ports, noise, distortion, low-noise amplifiers, mixers, oscillators, power amplifiers, and transceiver architectures. Lecture slides and a solutions manual for instructors are provided online to complete the course package.
Recent years have witnessed significant research efforts in flexible organic and amorphous-metal-oxide analogue electronics, in view of its formidable potential for applications such as smart sensor systems. This Element provides a comprehensive overview of this growing research area. After discussing the properties of organic and amorphous-metal-oxide technologies relevant to analogue circuits, this Element focuses on their application to two key circuit blocks: amplifiers and analogue-to-digital converters. The Element thus provides a fresh look at the evolution and immediate opportunities of the field, and identifies the remaining challenges for these technologies to become the platform of choice for flexible analogue electronics.