To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Song lyrics contain repeated patterns that have been proven to facilitate automated lyrics segmentation, with the final goal of detecting the building blocks (e.g., chorus, verse) of a song text. Our contribution in this article is twofold. First, we introduce a convolutional neural network (CNN)-based model that learns to segment the lyrics based on their repetitive text structure. We experiment with novel features to reveal different kinds of repetitions in the lyrics, for instance based on phonetical and syntactical properties. Second, using a novel corpus where the song text is synchronized to the audio of the song, we show that the text and audio modalities capture complementary structure of the lyrics and that combining both is beneficial for lyrics segmentation performance. For the purely text-based lyrics segmentation on a dataset of 103k lyrics, we achieve an F-score of 67.4%, improving on the state of the art (59.2% F-score). On the synchronized text–audio dataset of 4.8k songs, we show that the additional audio features improve segmentation performance to 75.3% F-score, significantly outperforming the purely text-based approaches.