Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T07:44:49.771Z Has data issue: false hasContentIssue false

5 - Geomorphology of Vesta

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

A search for volcanic and plutonic features on Vesta was an important driver for a geomorphological examination of the asteroid. Another goal was to determine if the asteroid was a protoplanet, one of the remnants of the material that formed the Solar System. Therefore, NASA’s Dawn spacecraft collected imaging, spectroscopic, and elemental abundance data, which were utilized to examine the asteroid’s surface. A digital terrain model was created and the asteroid’s various geomorphic features were analyzed. Large scale features include the Rheasilvia and Veneneia impact basins, the Divalia Fossae and Saturnalia Fossae trough sets, and the Vestalia Terra plateau. Small scale features include deposits of dark material, pitted terrain, pit crater chains, mass-wasting deposits, and impact craters. While these geomorphic analyses revealed no evidence of volcanism, evidence of magmatic activity on Vesta was identified. In addition, analysis of Vesta’s geomorphology suggests that it is not only a protoplanet, but also an intermediate body between asteroids and planets.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 67 - 80
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asphaug, E., Moore, J. M., Morrison, D., et al. (1996) Mechanical and geological effects of impact cratering on Ida. Icarus, 120, 158184.CrossRefGoogle Scholar
Barrat, J. A., Yamaguchi, A., Zanda, B., Bollinger, C., & Bohn, M. (2010) Relative chronology of crust formation on asteroid Vesta: Insights form the geochemistry of diogenites. Geochimica et Cosmochimica Acta, 74, 62186231.Google Scholar
Beck, A. W., & McSween, H. Y. (2010) Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.CrossRefGoogle Scholar
Binzel, R. P., Gaffey, M. J., Thomas, B. H., et al. (1997) Geologic mapping of Vesta from 1994 Hubble Space Telescope images, Icarus, 128, 95103.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.CrossRefGoogle ScholarPubMed
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244.CrossRefGoogle Scholar
Bogard, D. D. (2011) K–Ar ages of meteorites: Clues to parent-body thermal histories. Chemie der Erde – Geochemistry, 71, 207226.CrossRefGoogle Scholar
Bogard, D. D., & Garrison, D. H. (2003) 39Ar–40Ar ages of eucrites and thermal history of asteroid 4Vesta. Meteoritics and Planetary Science, 38, 669710.CrossRefGoogle Scholar
Bowling, T. J., Johnson, B. C., & Melosh, H. J. (2013a) Formation of equatorial graben following the Rheasilvia impact on asteroid 4 Vesta. 44th Lunar & Planetary Science Conference, March 18–22, Houston, TX, abs. 1673.Google Scholar
Bowling, T. J., Johnson, B. C., Melosh, H. J., et al. (2013b) Antipodal terrains created by the Rheasilvia basin forming impact on asteroid 4 Vesta. Journal of Geophysical Research, 118, 18211834.Google Scholar
Boyce, J. M., Wilson, L., Mouginis-Mark, P. J., Hamilton, C. W., & Tornabene, L. L. (2012) Origin of small pits in martian impact craters. Icarus, 221, 262.Google Scholar
Buczkowski, D. L., Barnouin, O. S., & Prockter, L. M. (2008) 433 Eros lineaments: Global mapping and analysis. Icarus, 193, 3952.Google Scholar
Buczkowski, D. L., Schmidt, B., Williams, D. A., et al. (2016) The geomorphology of Ceres. Science, 353, aaf4332.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Iyer, K. A., et al. (2012) Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Toplis, M., et al. (2014) The unique geomorphology and physical properties of the Vestalia Terra plateau. Icarus, 244, 89103.Google Scholar
Carsenty, U., Wagner, R. J., Buczkowski, D. L., et al. (2013) The “swarm” – A peculiar crater chain on Vesta. 44th Lunar & Planetary Science Conference, March 18–22, Houston, TX, abs. 1492.Google Scholar
Cohen, B. A. (2013) The Vestan cataclysm: Impact-melt clasts in howardites and the bombardment history of 4 Vesta. Meteoritics & Planetary Science, 48, 771785.CrossRefGoogle Scholar
Consolmagno, G. J., & Drake, M. J. (1977) Composition of the eucrite parent body: Evidence from rare Earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.Google Scholar
De Sanctis, M. C., Ammannito, E., Buczkowski, D., et al. (2014) Compositional evidence of magmatic activity on Vesta. Geophysical Research Letters, 41, 30383044.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012a) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M. C, Combe, J.–Ph., Ammannito, E., et al. (2012b) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. Astrophysical Journal Letters, 758, L36.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. (2012) Pitted terrain on Vesta and implications for the presence of volatiles. Science, 338, 246249.Google Scholar
Drake, M. J. (1979) Geochemical evolution of the eucrite parent body: Possible evolution of Asteroid 4 Vesta? In Gehrels, T., & Matthews, M. S. (eds.), Asteroids. Tucson: University of Arizona Press, pp. 765782.Google Scholar
Drake, M. J. (2001) Presidential address: The eucrite/Vesta story. Meteoritics & Planetary Science, 36, 501513.Google Scholar
Ferrill, D. A., & Morris, A. P. (2003) Dilational normal faults. Journal of Structural Geology, 25, 183196.CrossRefGoogle Scholar
Ferrill, D. A., Wyrick, D. Y., Morris, A. P., Sims, D. W., & Franklin, N. M. (2004) Dilational fault slip and pit chain formation on Mars, GSA Today, 14, 412.2.0.CO;2>CrossRefGoogle Scholar
Ferrill, D. A., Wyrick, D. Y., & Smart, K. J. (2011) Coseismic, dilational‐fault and extension‐fracture related pit chain formation in Iceland: Analog for pit chains on Mars. Lithosphere, 3, 133142.Google Scholar
Gaffey, M. J. (1997) Surface lithologic heterogeneity of asteroid 4 Vesta. Icarus, 127, 130157.Google Scholar
Garry, W. B., Williams, D. A., Yingst, R. A., et al. (2014) Geologic mapping of ejecta deposits in Oppia Quadrangle, Asteroid (4) Vesta. Icarus, 244, 104119.Google Scholar
Hartmann, W. K., Quantin, C., Werner, S. C., & Popova, O. (2010) Do young Martian ray craters have ages consistent with the crater count system? Icarus, 208, 621.CrossRefGoogle Scholar
Hasegawa, S., Murakawa, K., Ishiguro, M., et al. (2003) Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophysical Research Letters, 30, 2123.Google Scholar
Horstman, K. C., & Melosh, H. J. (1989) Drainage pits in cohesionless materials – Implications for the surface of PHOBOS. Journal of Geophysical Research, 94, 1243312441.Google Scholar
Ivanov, B. A., & Melosh, H. J. (2013) Two-dimensional numerical modeling of the Rheasilvia impact formation. Journal of Geophysical Research, 118, 15451557. doi:10.1002/jgre.20108Google Scholar
Jaumann, R., Nass, A., Otto, K., et al. (2014) The geological nature of dark material on Vesta and implications for the subsurface structure. Icarus, 240, 319.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jutzi, M., & Asphaug, E. (2011) Mega‐ejecta on asteroid Vesta. Geophysical Research Letters, 38, L01102.Google Scholar
Keil, K. (2002) Geologial history of asteroid 4 Vesta: The “smallest terrestrial planet”. In Bottke, W. F., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 573584.Google Scholar
Keil, K., Stoffler, D., Love, S. G., & Scott, E. R. D. (1997) Constraints on the role of impact heating and melting in asteroids. Meteoritics and Planetary Science, 32, 349363.Google Scholar
Keil, K., & Wilson, L. (2012) Volcanic eruption and intrusion processes on 4 Vesta: A reappraisal. 43rd Lunar Planetary Science Conference, Abs. 1127, Houston, TX: Lunar Planetary Institute.Google Scholar
Krohn, K., Jaumann, R., Elbeshausen, D., et al. (2014a) Bimodal craters: Impacts on slopes. Planetary and Space Science, 103, 3656.Google Scholar
Krohn, K., Jaumann, R., Otto, K., et al. (2014b) Mass movement on Vesta at steep scarps and crater rims. Icarus, 244, 120132.Google Scholar
Liu, Z., Yue, Z., Michael, G., et al. (2018) A global database and statistical analyses of (4) Vesta craters. Icarus, 311, 242257.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013a) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6, 411.Google Scholar
Marchi, S., Bottke, W. F., O’Brien, D. P., et al. (2013b) Small crater populations on Vesta. Planetary and Space Science, 103, 96103.CrossRefGoogle Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of Asteroid 4 Vesta. Science, 336, 690.Google Scholar
Martin, E. S., & Kattenhorn, S. A. (2013) Probing regolith depths on Enceladus by exploring a pit chain proxy. Lunar and Planetary Science Conference XLIV, #2047.Google Scholar
Martin, E. S., Kattenhorn, S. A., Collins, G. C., et al. (2017) Pit chains on Enceladus signal the recent tectonic dissection of the ancient cratered terrains. Icarus, 294, 209217.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCord, T. B., Li, J.-Y., Combe, J.-P., et al. (2012) Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 491, 8386.Google Scholar
McEwen, A. S., Hansen, C. J., Delamere, W. A., et al. (2007) A closer look at water-related geologic activity on Mars. Science, 317, 1706.Google Scholar
McSween, H. Y. J., Binzel, R. P., De Sanctis, M. C., et al. (2013) Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.CrossRefGoogle Scholar
McSween, H. Y. J., Mittledfehldt, D. W., Beck, A. W., Mayne, R. G., & McCoy, T. J. (2011) HED meteorites and their relationship to the geology of Vesta and the Dawn mission, Space Science Review, 163, 141174.Google Scholar
McSween, H. Y. J., Raymond, C. A., Stolper, E. M., et al. (2019) Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Geochemistry, 79, 125526.Google Scholar
Michaud, R. L., Pappalardo, R. T., & Collins, G. C. (2008) Pit chains on Enceladus: A discussion of their origin. Lunar and Planetary Science, XXXIX, abs. #1678.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., & Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. In Papike, J. J. (ed.), Planetary Materials. Washington, DC: Mineralogical Society of America, pp. 4-1–4-195.Google Scholar
Mouginis-Mark, P. J., & Garbeil, H. (2007) Crater geometry and ejecta thickness of the Martian impact crater Tooting. Meteoritics & Planetary Science, 42, 16151625.Google Scholar
O’Brien, D. P., Marchi, S., Morbidelli, A., et al. (2014) Constraining the cratering chronology of Vesta. Planetary and Space Science, 103, 131142.Google Scholar
Okubo, C. H., & Martel, S. J. (1998) Pit crater formation on Kilauea volcano, Hawaii. Journal of Volcanology and Geothermal Research, 86, 118.CrossRefGoogle Scholar
Otto, K. A., Jaumann, R., Krohn, K., et al. (2013) Mass-wasting features and processes in Vesta’s south polar basin Rheasilvia. Journal of Geophysical Research, 118, 22792294.Google Scholar
Prettyman, T. H., Feldman, W. C., McSween, H. Y. Jr., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Preusker, F., Scholten, F., Matz, K.-D., et al. (2012) Topography of Vesta from Dawn FC stereo images. 43rd Lunar Planetary Science Conference, Abs. 2012. Houston, TX: Lunar and Planetary Institute.Google Scholar
Preusker, F., Scholten, F., Matz, K.-D., et al. (2014) Global shape of Vesta from Dawn FC stereo images. 45th Lunar Planetary Science Conference, abs. 2027. Houston, TX: Lunar and Planetary Institute.Google Scholar
Prockter, L., Thomas, P., Robinson, M., et al. (2002) Surface expressions of structural features on Eros. Icarus, 155, 7593.Google Scholar
Raymond, C. A., Park, R. S., Asmar, S. W., et al. (2013) Vestalia Terra: An ancient mascon in the southern hemisphere of Vesta. 44th Lunar Planetary Science Conference, Abs. 2882. Houston, TX: Lunar and Planetary Institute.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 321340.Google Scholar
Reddy, V., Le Corre, L., O’Brien, D. P., et al. (2012a) Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Reddy, V., Nathues, A., Le Corre, L., et al. (2012b) Color and albedo heterogeneity of Vesta from Dawn. Science, 336, 700704.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.CrossRefGoogle ScholarPubMed
Schaefer, M., Natheus, A., Williams, D. A., et al. (2014) Imprint of the Rheasilvia impact on Vesta – Geologic mapping of quadrangles Gegania and Lucaria. Icarus, 244, 6073.Google Scholar
Schenk, P., O’Brien, D., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694.Google Scholar
Schiller, M., Baker, J. A., Bizzaro, M., Creech, J., & Irving, A. J. (2010) Timing and mechanisms of the evolution of the magma ocean on the HED parent body. 73rd Annual Meteorical Society Meeting, Abst. 5042. New York: Lunar Planetary Institute.Google Scholar
Schmedemann, N., Kneissl, T., Ivanov, B., et al. (2014) The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of the HED meteorites. Planetary and Space Science, 103, 104130.Google Scholar
Scully, J. E. C., Buczkowski, D. L., Schmedemann, N., et al. (2017) Evidence for the interior evolution of Ceres from geologic analysis of fractures. Geophysical Research Letters, 44, 95649572.CrossRefGoogle Scholar
Scully, J. E. C., Russell, C. T., Yin, A., et al. (2015) Geomorphical evidence for transient water flow on Vesta. Earth and Planetary Science Letters, 411, 151163.Google Scholar
Sierks, H., Keller, H. U., Jaumann, R., et al. (2011) The Dawn Framing Camera. Space Science Reviews, 163, 263327.Google Scholar
Stephan, K., Jaumann, R., De Sanctis, M. C., et al. (2014) A compositional and geological view of fresh ejecta of small impact craters on Asteroid 4 Vesta. Journal of Geophysical Research, 119, 2013JE004388.Google Scholar
Stickle, A. M., Schultz, P. H., & Crawford, D. A. (2015) Subsurface failure in spherical bodies: A formation scenario for linear troughs on Vesta’s surface. Icarus, 247, 1834.CrossRefGoogle Scholar
Sullivan, R., Greeley, R., Pappalardo, R., et al. (1996) Geology of 243 Ida. Icarus, 120, 119139.Google Scholar
Takeda, H. (1979) A layered-crust model of a howardite parent body. Icarus, 40, 455470.CrossRefGoogle Scholar
Takeda, H. (1997) Mineralogical records of early planetary processes on the howardite, eucrite, diogenite parent body with reference to Vesta. Meteoritic and Planetary Science, 32, 841853.Google Scholar
Thomas, N., Barbieri, C., Keller, H. U., et al. (2012) The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA’s Rosetta spacecraft. Planetary and Space Science, 66, 96124.CrossRefGoogle Scholar
Thomas, P. (1979) Surface features of Phobos and Deimos. Icarus, 40, 223243.CrossRefGoogle Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997) Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science, 277, 14921495.CrossRefGoogle Scholar
Tornabene, L. L., Osinski, G. R., McEwen, A. S., et al. (2012) Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process. Icarus, 220, 348.CrossRefGoogle Scholar
Trombka, J. I., Squyres, S. W., Bruckner, J., et al. (2000) The elemental composition of asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray spectrometer. Science, 289, 21012105.CrossRefGoogle ScholarPubMed
Veverka, J., Thomas, P., Simonelli, D., et al. (1994) Discovery of grooves on Gaspra. Icarus, 107, 399411.Google Scholar
Whitten, J. L., & Martin, E. S. (2019) Icelandic pit chains as planetary analogs: Using morphologic measurements of pit chains to determine regolith thickness. Journal of Geophysical Research, 124, 2983–99.Google Scholar
Williams, D. A., Denevi, B. W., Mittlefehldt, D. W., et al. (2014a) The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters. Icarus, 244, 7488.Google Scholar
Williams, D. A., O’Brien, D. P., Schenk, P. M., et al. (2013) Lobate and flow-like features on asteroid Vesta, Planetary and Space Science, 103, 2435.CrossRefGoogle Scholar
Williams, D. A., Yingst, R. A., & Garry, B. (2014b) Introduction: The geologic mapping of Vesta. Icarus, 244, 112.Google Scholar
Wilson, L., Bland, P., Buczkowski, D., Keil, K., & Krot, S. (2015) Hydrothermal and magmatic fluid flow in asteroids. In Michel, P., DeMeo, F., & Bottke, W. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 553572.Google Scholar
Wilson, L., & Keil, K. (1996) Volcanic eruptions and intrusions on the asteroid 4 Vesta. Journal of Geophysical Research, 101, 18927.Google Scholar
Wyrick, D., Ferrill, D. A., Morris, A. P., Colton, S. L., & Sims, D. W. (2004) Distribution, morphology and origins of Martian pit crater chains. Journal of Geophysical Research, 109, E06005.CrossRefGoogle Scholar
Wyrick, D. Y., Buczkowski, D. L., Bleamaster, L. F., & Collins, G. C. (2010) Pit crater chains across the Solar System. 41st Lunar Planetary Science Conference, Abs. 1413. Houston, TX: Lunar and Planetary Institute.Google Scholar
Zellner, B. H., Albrecht, R., Binzel, R. P., et al. (1997) Hubble Space Telescope images of Asteroid 4 Vesta in 1994. Icarus, 128, 8387.Google Scholar
Zellner, N. E. B., Gibbard, S., de Pater, I., Marchis, F., & Gaffey, M. J. (2005) Near-IR imaging of asteroid 4 Vesta. Icarus, 177, 190195.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×