Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T22:52:05.314Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 April 2021

Hugh Rollinson
Affiliation:
University of Derby
Victoria Pease
Affiliation:
Stockholm University
Get access
Type
Chapter
Information
Using Geochemical Data
To Understand Geological Processes
, pp. 293 - 337
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadie, C., Lacan, F., Radic, A., Pradoux, C., Poitrasson, F., 2017. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean. Proceedings of the National Academy of Sciences 114, 858863.Google Scholar
Acosta-Vigil, A., London, D., Morgan, G.B. VI, Cesare, B., Buick, I., Hermann, J., Bartoli, O., 2017. Primary crustal melt compositions: Insights into the controls, mechanisms and timing of generation from kinetics experiments and melt inclusions. Lithos 286–287, 454479.CrossRefGoogle Scholar
Addy, S.K., Garlick, G.D., 1974. Oxygen isotope fractionation between rutile and water. Contributions to Mineralogy and Petrology 45, 119121.CrossRefGoogle Scholar
Ader, M., Thomazo, C., Sansjofre, P., Busigny, V., Papineau, D., Laffont, R., Cartigny, P., Halverson, G.P., 2016. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives. Chemical Geology 429, 93110.Google Scholar
Agrawal, S., Guevara, M., Verma, S.P., 2004. Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks. International Geology Reviews 46, 575594.CrossRefGoogle Scholar
Ahmedali, S.T., 1989. X-ray fluorescence analysis in the geological sciences: Advances in methodology. Geological Association of Canada: Short course 7.Google Scholar
Aigner-Torres, M., Blundy, J., Ulmer, P., Pettke, T., 2007. Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: An experimental approach. Contributions to Mineralogy and Petrology 153, 647667.Google Scholar
Aitcheson, S.J., Forrest, A.H., 1994. Quantification of crustal contamination in open magmatic systems. Journal of Petrology 35, 461488.Google Scholar
Aitchison, J., 1981. A new approach to null correlations of proportions. Mathematical Geology 13, 175189.Google Scholar
Aitchison, J., 1982. The statistical analysis of compositional data (with discussion). Journal of the Royal Statistical Society 44, 139177.Google Scholar
Aitchison, J., 1984. The statistical analysis of geochemical compositions. Mathematical Geology 16, 531564.Google Scholar
Aitchison, J., 1986. The statistical analysis of compositional data. Methuen, New York.Google Scholar
Aitchison, J., 2003. The statistical analysis of compositional data. Blackburn Press, Caldwell, NJ.Google Scholar
Aitchison, J., Egozcue, J.J., 2005. Compositional data analysis: Where are we and where should we be heading? Mathematical Geology 37, 829850.CrossRefGoogle Scholar
Aitchison, J., Greenacre, M., 2002. Biplots of compositional data. Applied Statistics 51, 375392.Google Scholar
Albarede, F., Telouk, P., Balter, V., 2017. Medical applications of isotope metallomics. Reviews in Mineralogy and Geochemistry 82, 851885.CrossRefGoogle Scholar
Alibert, C., McCulloch, M.T., 1993. Rare earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley, Western Australia. Geochimica et Cosmochimica Acta 57(1), 187204.CrossRefGoogle Scholar
Alibo, D.S., Nozaki, Y., 1999. Rare earth elements in seawater: Particle association, shale normalization, and Ce oxidation. Geochimica et Cosmochimica Acta 63, 363372.CrossRefGoogle Scholar
Allegre, C.J., Minster, J.F., 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 125.CrossRefGoogle Scholar
Allegre, C.J., Rousseau, D., 1984. The growth of the continents through geological time studied by the Nd isotopic analysis of shales. Earth and Planetary Science Letters 67, 1934.Google Scholar
Allegre, C.J., Hart, S.R. and Minster, J.-F., 1983. Chemical structure and evolution of the mantle and continents determined by inversion of Nd and Sr isotopic data, I. Theoretical models. Earth and Planetary Science Letters 66, 177190.Google Scholar
Allegre, C.J., Treuil, M., Minster, J.F., Minster, B., Albarède, F., 1977. Systematic use of trace element in igneous process. Contributions to Mineralogy and Petrology 60(1), 5775.CrossRefGoogle Scholar
Al-Mishwat, A.T., 2015. CIPWFULL: A software program for calculation of comprehensive CIPW norms of igneous rocks. International Association for Mathematical Geosciences 47, 441453.Google Scholar
Altwegg, K., et al., 2015. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(6220).Google Scholar
Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64(24), 42054225.Google Scholar
Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta 53, 197214.Google Scholar
André, L., Abraham, K., Hofmann, A., Monin, L., Kleinhanns, I.C., Foley, S.F., 2019. Early continental crust generated by reworking of basalts variably silicified by seawater. Nature Geoscience 12, 769773.Google Scholar
Anovitz, L.M., Essene, E.J., 1987. Phase equilibria in the system CaCO3-MgCO3-FeCO3. Journal of Petrology 28, 389414.CrossRefGoogle Scholar
Apted, M.J., Roy, S.D., 1981. Corrections to the trace element fractionation equations of Hertogen and Gijbels (1976). Geochimica et Cosmochimica Acta 45, 777778.CrossRefGoogle Scholar
Aranovich, L.Y., Newton, R.C., Manning, C.E., 2013. Brine-assisted anatexis: Experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions. Earth and Planetary Science Letters 374, 111120.CrossRefGoogle Scholar
Arevalo, R., 2014. Laser ablation ICP-MS and laser fluorination GS-MS. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 425441.Google Scholar
Arevalo, R., McDonough, W.F., 2010. Chemical variations and regional diversity observed in MORB. Chemical Geology 271, 7085.Google Scholar
Arevalo, R., McDonough, W.F., Luong, M., 2009. The K/U ratio of the silicate earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters 278, 361369.Google Scholar
Armstrong, J.T., McSwiggen, P., Nielsen, C., 2013. A thermal field-emission electron probe microanalyzer for improved analytical spatial resolution. Microscopy and Analysis 27, 1822.Google Scholar
Armstrong, R., 1981. Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Philosophical Transactions of the Royal Society of London A30, 443472.Google Scholar
Arndt, N.T., Goldstein, S.L., 1987. Use and abuse of crust-formation ages. Geology 15, 893895.Google Scholar
Arndt, N.T., Jenner, G.A., 1986. Crustally contaminated komatiites and basalts from Kambalda, western Australia. Chemical Geology 229–255.Google Scholar
Arndt, N.T., Lesher, C.M., Barnes, S.J., 2008. Komatiite. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Arth, J.G., 1976. Behavior of trace elements during magmatic processes: A summary of theoretical models and their applications. Journal of Research US Geological Survey 4(1), 4147.Google Scholar
Asimow, P.D., Ghiorso, M.S., 1998. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist 83, 11271132.CrossRefGoogle Scholar
Austreheim, H., Griffin, W.L. (eds.), 2000. Element partitioning in geochemistry and petrology. Lithos 53, 5775.Google Scholar
Bacon, C.R., Druitt, T.H., 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology 98, 224256.Google Scholar
Baertschi, P. 1976. Absolute 18O content of standard mean ocean water. Earth and Planetary Science Letters 1, 341344.CrossRefGoogle Scholar
Bai, Y., Su, B.-X., Xiao, Y., Chen, C., Cui, M.-M., He, X.-Q., Qin, L.-P., Charlier, B., 2019. Diffusion-driven chromium isotope fractionation in ultramafic cumulate minerals: Elemental and isotopic evidence from the Stillwater Complex. Geochimica et Cosmochimica Acta 263, 167181.Google Scholar
Bailey, J.C., 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology 32, 139154.Google Scholar
Baker, A.J., 1988. Stable isotope evidence for limited fluid infiltration of deep crustal rocks from the Ivrea Zone, Italy. Geology 16, 492495.Google Scholar
Barker, D.S., 1978. Magmatic trends on alkali-iron-magnesium diagrams. American Mineralogist 63, 531534.Google Scholar
Barker, F., 1979. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker, F. (ed.), Trondhjemites, dacites and related rocks. Elsevier, Amsterdam. 112.Google Scholar
Barnes, S.-J., Maier, W.D., 2002. Platinum group elements and microstructures of normal Merensky Reef, from Impala platinum mines, Bushveld Complex. Journal of Perology 43, 102128.Google Scholar
Barrat, J.A., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., Bayon, G., 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta 83, 7992.CrossRefGoogle Scholar
Barry, P.H., Hilton, D.R., Fischer, T.P., de Moor, J.M., Mangasini, F., Ramirez, C., 2013. Helium and carbon isotope systematics of cold ‘mazuku’ CO2 vents and hydrothermal gases and fluids from Rungwe Volcanic Province, southern Tanzania. Chemical Geology 339, 141156.CrossRefGoogle Scholar
Barry, P.H., Hilton, D.R., Furi, E., Halldorsson, S.A., Gronvold, K., 2014. Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochimica et Cosmochimica Acta 134, 7499.Google Scholar
Barth, T.W., 1952. Theoretical petrology: A textbook on the origin and evolution of rocks. Wiley, New York.Google Scholar
Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T., Usui, A., 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology 381, 19.CrossRefGoogle Scholar
Bau, M., Schmidt, K., Pack, A., Bendel, V., Kraemer, D., 2018. The European shale: An improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe. Applied Geochemistry 90, 142149.CrossRefGoogle Scholar
Bauer, K.W., Gueguen, B., Cole, D.B., Francois, R., Kallmeyer, J., Planavsky, N., Crowe, S.A., 2019. Chromium isotope fractionation in ferruginous sediments. Geochimica et Cosmochimica Acta 223, 198215.Google Scholar
Bauer, M.E., Burisch, M., Ostendorf, J., Krause, J., Frenzel, M., Seifert, T., Gutzmer, J., 2019. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Mineralium Deposita 54, 237262.Google Scholar
Bea, F., 1996. Controls on the trace element composition of crustal melts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 87(1–2), 3341.Google Scholar
Beattie, P., 1994. Systematics and energetics of trace-element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning. Chemical Geology 117, 5771.CrossRefGoogle Scholar
Beaumont, V., Robert, F., 1999. Nitrogen isotope ratios of kerogens in Precambrian cherts: A record of the evolution of atmospheric chemistry? Precambrian Research 96, 6382.Google Scholar
Bebout, G.E., Fogel, M.L., Cartigny, P., 2013. Nitrogen, highly volatile and yet surprisingly compatible. Elements 9, 333338.CrossRefGoogle Scholar
Beccaluva, L., Bianchini, G., Natali, C., Siena, F., 2017. The alkaline-carbonatite complex of Jacupiranga (Brazil): Magma genesis and mode of emplacement. Gondwana Research 44, 157177.CrossRefGoogle Scholar
Becker, A., Holz, F., Johannes, W., 1998. Liquidus temperatures and phase compositions in the system Qz-Ab-Or at 5kbar and very low water activities. Contributions to Mineralogy and Petrology 130, 213224.CrossRefGoogle Scholar
Bédard, J.H., 2005. Partitioning coefficients between olivine and silicate melts. Lithos 83, 394419.Google Scholar
Bédard, J.H., 2006. Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica Acta 70, 37173742.CrossRefGoogle Scholar
Bédard, J.H., 2007. Trace element partitioning coefficients between silicate melts and orthopyroxene: Parameterizations of D variations. Chemical Geology 244(1–2), 263303.CrossRefGoogle Scholar
Bédard, J.H., 2014. Parameterizations of calcic clinopyroxene: Melt trace element partition coefficients. Geochemistry, Geophysics, Geosystems 15, doi: 10.1002/2013GC005112.Google Scholar
Béguelin, P., Bizimis, M., McIntosh, E.C., Cousens, B., Clague, D.A., 2019. Source vs processes: Unraveling the compositional heterogeneity of rejuvenated-type Hawaiian magmas. Earth and Planetary Science Letters 514, 119129.Google Scholar
Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O’Reilly, S.Y., Pearson, N.J., 2010. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos 119, 457466.CrossRefGoogle Scholar
Bender, J.F., Langmuir, C.H., Hanson, G.N., 1984. Petrogenesis of basalt glasses from the Tamayo region, East Pacific Rise. Journal of Petrology 25, 213254.Google Scholar
Bennett, S.L., Blundy, J., Elliott, T., 2004. The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochimica et Cosmochimica Acta 68, 23352347.CrossRefGoogle Scholar
Bennett, V.C., Esat, T.M., Norman, M.D., 1996. Two mantle-plume components in Hawaiian picrites inferred from correlated Os–Pb isotopes. Nature 381(6579), 221224.Google Scholar
Bente, K., Nielsen, H., 1982. Experimental S isotope fractionation studies between co-existing bismuthinite (Bi2S3) and sulphur (So). Earth and Planetary Science Letters 59, 1820.CrossRefGoogle Scholar
Berger, M., Rollinson, H., 1997. Isotopic and geochemical evidence for crust–mantle interaction during late Archaean crustal growth. Geochimica et Cosmochimica Acta 61, 48094829.CrossRefGoogle Scholar
Bethke, C.M., 2012. Geochemical and biogeochemical reaction modelling, 2nd ed. Cambridge University Press.Google Scholar
Bézos, A., Humler, E., 2005. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta 69, 711725.Google Scholar
Bézos, A., Lorand, J.P., Humler, E., Gros, M., 2005. Platinum-group element systematics in Mid-Oceanic Ridge basaltic glasses from the Pacific, Atlantic, and Indian Oceans. Geochimica et Cosmochimica Acta 69(10), 26132627.Google Scholar
Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611627.Google Scholar
Bhatia, M.R., 1984. Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation. Sedimentary Geology 41(2–4), 249268.Google Scholar
Bhatia, M.R., Crook, K.A.W, 1986. Trace element characteristics of graywackes and tectonic discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181193.CrossRefGoogle Scholar
Bickle, M.J., Arndt, N.T., Nisbet, E.G., Orpen, J.L., Martin, A., Keays, R.R., Renner, R., 1993. Geochemistry of the igneous rocks of the Belingwe greenstone belt: Alteration contamination and petro-genesis. In: Bickle, M.J., Nisbet, E.G. (eds.), The geology of the Belingwe greenstone belt Zimbabwe. Balkema, Rotterdam. 175213.Google Scholar
Bindeman, I., 2008. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineralogy and Geochemistry 69, 445478.Google Scholar
Bindeman, I.N., Davis, A.M., 2000. Trace element partitioning between plagioclase and melt: Investigation of dopant influence on partition behavior. Geochimica et Cosmochimica Acta 64, 28632878.Google Scholar
Bindeman, I.N., Valley, J.W., 2002. Oxygen isotope study of the Long Valley magma system, California: Isotope thermometry and convection in large silicic magma bodies. Contributions to Mineralogy and Petrology 144, 185205.Google Scholar
Bindeman, I.N., Davis, A.M., Drake, M.J., 1998. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochimica et Cosmochimica Acta 62, 11751193.CrossRefGoogle Scholar
Bingham, N.H., Fry, J.M., 2010. Regression: Linear models in statistics. In: Regression. Springer, London.Google Scholar
Bizimis, M., Lassiter, J.C., Salters, V.J., Sen, G., Griselin, M., 2004. Extreme Hf-Os isotope compositions in Hawaiian peridotite xenoliths: Evidence for an ancient recycled lithosphere. AGUFM, V51B-0550 (abstract).Google Scholar
Bizimis, M., Griselin, M., Lassiter, J.C., Salters, V.J., Sen, G., 2007. Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters 257, 259273.Google Scholar
Black, B.A., Gibson, S.A., 2019. Deep carbon and the life cycle of large igneous provinces. Elements 15, 319324.CrossRefGoogle Scholar
Blackburn, T.J., Stockli, D.F., Walker, J.D., 2007. Magnetite (U–Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks. Earth and Planetary Science Letters 259, 360371.CrossRefGoogle Scholar
Blichert‐Toft, J., Weis, D., Maerschalk, C., Agranier, A., Albarède, F., 2003. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochemistry, Geophysics, Geosystems 4(2).CrossRefGoogle Scholar
Bloch, E., Jollands, M., Devoir, A., Bouvier, A.-S., Ibañez-Mejia, M., Baumgartner, L.P., 2020. Multispecies diffusion of yttrium, rare earth elements and hafnium in garnet. Journal of Petrology, egaa055, https://doi.org/10.1093/petrology/egaa055.CrossRefGoogle Scholar
Blundy, J., Cashman, K., 2001. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contributions to Mineralogy and Petrology 140, 631650.CrossRefGoogle Scholar
Blundy, J.D., Wood, B.J., 1991. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta 55, 193209.Google Scholar
Blundy, J.D., Wood, B.J., 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372, 452454.Google Scholar
Blundy, J.D., Wood, B.J., 2003. Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters 210, 383397.Google Scholar
Bohrson, W.A., Spera, F.J., 2001. Energy-constrained open-system magmatic processes II: Application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. Journal of Petrology 42, 10191041.Google Scholar
Bohrson, W.A., Spera, F.J., 2007. Energy-constrained recharge, assimilation, and fractional crystallization (EC-RAXFC): A visual basic computer code for calculating trace element and isotope variations of open-system magmatic systems. Geochemistry, Geophysics, Geosystems 8, Q11003. https://doi.org/10.1029/2007G C001781.CrossRefGoogle Scholar
Bohrson, W.A., Spera, F.J., Ghiorso, M.S., Brown, G.A., Creamer, J.B., Mayfield, A., 2014. Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: The magma chamber simulator. Journal of Petrology 55, 16851717.Google Scholar
Bolhar, R., Hofmann, A., Woodhead, J., Hergt, J., Dirks, P.H.G.M., 2002. Pb- and Nd-isotope systematics of stromatolitic limestones from the 2.7 Ga Ngezi group of the Belingwe greenstone belt: Constraints on timing of deposition and provenance. Precambrian Research 114(3–4), 277294.CrossRefGoogle Scholar
Bolhar, R., Whitehouse, M.J., Milani, L., Magalhães, N., Golding, S.D., Bybee, G., LeBras, L., Bekker, A., 2020. Atmospheric S and lithospheric Pb in sulphides from the 2.06 Ga Phalaborwa phoscorite-carbonatite complex, South Africa. Earth and Planetary Science Letters 530, 115939.Google Scholar
Bonnand, P., Parkinson, I. J., Anand, M., 2016. Mass-dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochimica et Cosmochimica Acta 175, 208221.Google Scholar
Bottinga, Y., 1969, Calculated fractionation factors between carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapour. Geochimica et Cosmochimica Acta 33, 4964.CrossRefGoogle Scholar
Bottinga, Y., Javoy, M., 1973. Comments on oxygen isotope geothermometry. Earth and Planetary Science Letters 20, 250265.CrossRefGoogle Scholar
Bottrell, S.H., Greenwood, P.B., Yardley, B.W.D., Sheppard, T.J., Spiro, B., 1990. Metamorphic and post-metamorphic fluid flow in the low-grade rocks of the Harlech dome, north Wales. Journal of Metamorphic Geology 8, 131143.CrossRefGoogle Scholar
Bouvier, A., Boyet, M., 2016. Primitive solar system materials and Earth share a common initial 142Nd abundance. Nature 537, 399402.Google Scholar
Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273(1–2), 4857.Google Scholar
Bowen, N.L. 1928. The evolution of the igneous rocks. Princeton University Press.Google Scholar
Boynton, W.V., 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson, P. (ed.), Rare earth element geochemistry. Elsevier, Amsterdam. 63114.Google Scholar
Boztug, D., Arehart, G.B., 2007. Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey. Journal of Asian Earth Sciences 30, 403416.Google Scholar
Branson, O., Fehrenbacher, J.S., Vetter, L., Sadekov, A.Y., Eggins, S.M., Spero, H.J., 2019. LAtools: A data analysis package for the reproducible reduction of LA-ICPMS data. Chemical Geology 504, 8395.CrossRefGoogle Scholar
Brenan, J.M., Shaw, H.F., Ryerson, F.J., Phinney, D.L., 1995. Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth and Planetary Science Letters I35, 111.Google Scholar
Brenan, J.M., Neroda, E., Lundstron, C., Shaw, H.F., Ryerson, F.J., Phinney, D.L., 1998. Behaviour of boron, beryllium, and lithium during melting and crystallization: Constraints from mineral-melt partitioning experiments. Geochimica et Cosmochimica Acta 62, 21292141.Google Scholar
Brewer, A., Teng, F.-Z., Dethier, D., 2018. Magnesium isotope fractionation during granite weathering. Chemical Geology 501, 95103.Google Scholar
Brice, J.C., 1975. Some thermodynamic aspects of the growth of strained crystals. Journal of Crystal Growth 28, 249253.Google Scholar
Brooks, C., Hart, S.R., Wendt, I., 1972. Realistic use of two‐error regression treatments as applied to rubidium‐strontium data. Reviews of Geophysics 10, 551577.CrossRefGoogle Scholar
Brophy, J.G., Ota, T., Kunihro, T., Tsujimori, T., Nakamura, E., 2011. In situ ion-microprobe determination of trace element partition coefficients for hornblende, plagioclase, orthopyroxene, and apatite in equilibrium with natural rhyolitic glass, Little Glass Mountain rhyolite, California. American Mineralogist 96, 18381850.CrossRefGoogle Scholar
Brűgmann, G.E., Naldett, A.J., MacDonald, A.J., 1989. Magma mixing and constitutional zone refining in the Lac des Iles complex, Ontario: Genesis of platinum-group element mineralization. Economic Geology 84, 15571573.CrossRefGoogle Scholar
Buccianti, A., Grunsky, E., 2014. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration 141, 15.Google Scholar
Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., 2006. Compositional data analysis in the geosciences: From theory to practice. Geological Society Special Publication 264. Geological Society, London.Google Scholar
Buccianti, A., Lima, A., Albaneses, S., De Vivo, B., 2018. Measuring the change under compositional data analysis (CoDA): Insight on the dynamics of geochemical systems. Journal of Geochemical Exploration 189, 100108.Google Scholar
Buggle, B., Glasser, B., Hambach, U.F., Gerasimenko, N., Markovic, S., 2011. An evaluation of geochemical weathering indices in loess-palaeosol studies. Quaternary International 240, 1221.Google Scholar
Burrows, D.R., Wood, P.C., Spooner, E.T.C., 1986. Carbon isotope evidence for a magmatic origin for Archean gold-quartz vein ore deposits. Nature 321, 851854.CrossRefGoogle Scholar
Busigny, V., Bebout, G., 2013. Nitrogen in the silicate Earth: Speciation and isotopic behavior during mineral–fluid interactions. Elements 9, 353358.Google Scholar
Busigny, V., Chen, J.-B., Philippot, P., Borensztajn, S., Moynier, F., 2018. Insight into hydrothermal and subduction processes from copper and nitrogen isotopes in oceanic metagabbros. Earth and Planetary Science Letters 498, 5464.Google Scholar
Butler, I.B., Fallick, A.E., Nesbitt, R.W., 1998. Mineralogy, sulphur isotope geochemistry and the development of sulphide structures at the Broken Spur hydrothermal vent site, 29°10′N, Mid-Atlantic Ridge. Journal of the Geological Society, London 155, 773785.CrossRefGoogle Scholar
Butler, J.C., 1979. Trends in ternary petrological variation diagrams: Fact or fantasy? American Mineralogist 64, 11151121.Google Scholar
Butler, J.C., 1981. Effect of various transformations on the analysis of percentage data. Mathematical Geology 13, 5368.CrossRefGoogle Scholar
Butler, J.C., 1982. Artificial isochrons. Lithos 15, 207214.CrossRefGoogle Scholar
Butler, J.C., 1986. The role of spurious correlation in the development of a komatiite alteration model. Journal of Geophysical Research 91, E275E280.CrossRefGoogle Scholar
Butler, J.C., Woronow, A., 1986. Discrimination among tectonic settings using trace element abundances of basalts. Journal of Geophysical Research 91, B10289B10300.Google Scholar
Cabanis, B., Lecolle, M., 1989. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale. Comptes Rendus de l’Academie des sciences 309(Ser. II), 20232029.Google Scholar
Campbell, A.C., et al., 1988. Chemistry of hot springs on the Mid-Atlantic Ridge. Nature 335, 514519.CrossRefGoogle Scholar
Carlson, R.W., 2005. Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos 82(3–4), 249272.Google Scholar
Carlson, R.W., 2014. Thermal ionisation mass spectrometry. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 337354.Google Scholar
Caro, G., Bourdon, B., 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: Consequences for the geochemical evolution of the mantle–crust system. Geochimica et Cosmochimica Acta 74, 33333349.CrossRefGoogle Scholar
Carr, D.D., Rooney, L.F., 1983. Limestone and dolomite. In: Lefond, S.Y. (ed.), Industrial minerals and rocks, 5th ed. American Institute of Metallurgical, Mining and Petroleum Engineers, New York. 833868.Google Scholar
Carr, M.J., Gazel, E., 2017. Igpet software for modelling igneous processes: Examples of application using the open educational version. Mineralogy and Petrology 111, 283289.CrossRefGoogle Scholar
Carr, P.F., 1985. Geochemistry of late Permian shoshonitic lavas from the southern Sydney Basin. In: Sutherland, F.L., Franklin, B.J., Waltho, A.E. (eds.), Volcanism in Eastern Australia. Geological Society of Australia, N.S.W. Division Publication 1, 165–183.Google Scholar
Cartigny, P. 2005. Stable isotopes and the origin of diamond. Elements, 1, 7984.Google Scholar
Cartigny, P., Ader, M., 2003. A comment on ‘The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present’ by B. Marty and N. Dauphas [Earth and Planetary Science Letters 206(2003) 397–410]. Earth and Planetary Science Letters 216, 425432.Google Scholar
Cartigny, P., Marty, B., 2013. Nitrogen isotopes and mantle geodynamics: The emergence of life and the atmosphere–crust–mantle connection. Elements 9, 359366.CrossRefGoogle Scholar
Cassata, W.S., Renne, P.R., 2013. Systematic variations of argon diffusion in feldspars and implications for thermochronometry. Geochimica et Cosmochiica Acta 112, 251287.CrossRefGoogle Scholar
Cassata, W.S., Renne, P., Shuster, D., 2011. Argon diffusion in pyroxenes: Implications for thermochronometry and mantle degassing. Earth and Planetary Science Letters 304, 407416.Google Scholar
Cavazzini, G., 1996. Degrees of contamination in magmas evolving by assimilation-fractional crystallization. Geochimica et Cosmochimica Acta 60, 20492052.Google Scholar
Cawood, P., Hawkesworth, C., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology 40, 875878.Google Scholar
Cazanas, X., Alfonso, P., Melgarejo, J.C., Proenza, J.A., Fallick, A.E., 2008. Geology, fluid inclusion and sulphur isotope characteristics of the El Cobre VHMS deposit, southern Cuba. Mineralium Deposita 43, 805824.Google Scholar
Cesare, B., Acosta-Vigil, A., Bartoli, O., Ferrero, S., 2015. What can we learn from melt inclusions in migmatites and granulites? Lithos 239, 186216.Google Scholar
Chacko, T., Cole, D.R., Horita, J., 2001. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. In: Valley, J.W., Cole, D.R. (eds.), Stable isotope geochemistry. Mineralogical Society of America, Washington, DC. 181.Google Scholar
Chakhmouradian, A.R., Wall, F., 2012. Rare earth elements. Elements 8, 333376.Google Scholar
Chakrabarti, R., Basu, A.R., Paul, D.K., 2007. Nd–Hf–Sr–Pb isotopes and trace element geochemistry of Proterozoic lamproites from southern India: Subducted komatiite in the source. Chemical Geology 236, 291302.Google Scholar
Chamberlain, C.P., Rumble, D., 1988. Thermal anomalies in a regional metamorphic terrane: An isotopic study of the role of fluids. Journal of Petrology 29, 12151232.Google Scholar
Chan, L.H., 1987. Lithium isotope analysis by thermal ionisation mass-spectrometry of lithium tetraborate. Analytical Chemistry 59, 26622665.CrossRefGoogle Scholar
Chan, L. H., Frey, F. A., 2003. Lithium isotope geochemistry of the Hawaiian plume: Results from the Hawaii Scientific Drilling Project and Koolau volcano. Geochemistry Geophysics Geosystems 4, 8707.Google Scholar
Chan, L.H., Leeman, W. P., Plank, T., 2006. Lithium isotopic composition of marine sediments. Geochemistry, Geophysics, Geosystems 7, doi: 10.1029/2005GC001202.Google Scholar
Chapman, J.B., Gehrels, G.E., Ducea, M.N., Giesler, N., Pullen, A., 2016. A new method for estimating parent rock trace element concentrations from zircon. Chemical Geology 439, 5970.CrossRefGoogle Scholar
Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173174.Google Scholar
Chase, C., Patchett, P., 1988. Stored mafic/ultramafic crust and early Archean mantle depletion. Earth and Planetary Science Letters 91, 6672.CrossRefGoogle Scholar
Chaussidon, M., Deng, Z., Villeneuve, J., Moureau, J., Watson, B., Richter, F., Moynier, F., 2017. In-situ analysis of non-traditional isotopes by SIMS and LA-MC-ICP-MS: Key aspects and the example of Mg-isotopes in olivines and silicate glass. Reviews in Mineralogy and Geochemistry 82, 127164.Google Scholar
Chauvel, C., 2018. Incompatible elements. In: White, W.M. (ed.), Encyclopedia of geochemistry. Springer. 719721.Google Scholar
Chauvel, C., Blichert-Toft, J., 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters 190(3–4), 37151.Google Scholar
Chauvel, C., Rudnick, R.L., 2018. Large-ion lithophile elements. In: White, W.M. (ed.), Encyclopedia of geochemistry. Springer. 800801.CrossRefGoogle Scholar
Chayes, F., 1949. On ratio correlation in petrography. Journal of Geology 57, 239254.Google Scholar
Chayes, F., 1960. On correlation between variables of constant sum. Journal of Geophysical Research 65, 41854193.Google Scholar
Chayes, F., 1971. Ratio correlation. University of Chicago Press.Google Scholar
Chayes, F., 1977. Use of correlation statistics with rubidium-strontium systematics. Science 196, 12341235.Google Scholar
Chen, C., Su, B.X., Xiao, Y., Sakyi, P.A., He, X.Q., Pang, K.N., Ibrahim, U., Erdi, A., Qin, L.P., 2019. High-temperature chromium isotope fractionation and its implications: Constraints from Kızıldag ophiolite, SE Turkey. Lithos 342, 361369.CrossRefGoogle Scholar
Chen, R.-X., Zheng, Y.-F., Gong, B., 2011. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: Constraints on fluid flow during continental subduction-zone metamorphism. Chemical Geology 281, 103124.CrossRefGoogle Scholar
Chen, Y., Huang, F., Shi, G.-H., Wu, F.-Y., Chen, X., Jin, Q.-Z., Su, B., Guo, S., Sein, K., Nyunt, T.T., 2018. Magnesium isotope composition of subduction zone fluids as constrained by jadeitites from Myanmar. Journal of Geophysical Research: Solid Earth 123, 75667585.Google Scholar
Chen, Y., Song, S., Niu, Y., Wei, C., 2014. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochimica et Cosmochimica Acta 132, 311336.Google Scholar
Cherniak, D.J., 1993. Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chemical Geology 110, 177194.CrossRefGoogle Scholar
Cherniak, D.J., 2000. Pb diffusion in rutile. Contributions to Mineralogy and Petrology 139, 198207.CrossRefGoogle Scholar
Cherniak, D.J., Watson, E.B., 1992. A study of strontium diffusion in K-feldspar, Na–K feldspar and anorthite using Rutherford backscattering spectroscopy. Earth and Planetary Science Letters 113, 411425.Google Scholar
Cherniak, D.J., Watson, E.B., 2001. Pb diffusion in zircon. Chemical Geology 172, 19992017.CrossRefGoogle Scholar
Cherniak, D.J., Hanchar, J., Watson, E., 1997. Rare earth diffusion in zircon. Chemical Geology 134, 289301.Google Scholar
Cherniak, D.J., Lanford, W.A., Ryerson, F.J., 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta 55, 16631673.CrossRefGoogle Scholar
Cherniak, D.J., Watson, E.B., Grove, M., Harrison, T.M., 2004. Pb diffusion in monazite: A combined RBS/SIMS study. Geochimica et Cosmochimica Acta 68, 829840.CrossRefGoogle Scholar
Chesner, C.A., Ettlinger, A.D., 1989. Composition of volcanic allanite from the TobaTuffs, Sumatra, Indonesia. American Mineralogist 74, 750758.Google Scholar
Chivas, A.R., Andrew, A.S., Sinha, A.K., O’Neill, J.R., 1982. Geochemistry of a Pliocene-Pleistocene oceanic-arc plutonic complex, Guadalcanal. Nature 300, 139143.Google Scholar
Clark, I., Harper, W.V., 2007. Practical geostatistics 2000. Ecosse North America, Columbus, OH.Google Scholar
Clark, R.N., Brown, R.H., Cruikshank, D.P., Swayze, G.A., 2019. Isotopic ratios of Saturn’s rings and satellites: Implications for the origin of water and Phoebe. Icarus 321, 791802.Google Scholar
Clauer, N., Fallick, A.E., Gálan, E., Aparicio, P., Miras, A., Fernández-Caliani, J.C., Aubert, A., 2015. Stable isotope constraints on the origin of kaolin deposits from Variscan granitoids of Galicia (NW Spain). Chemical Geology 417, 90101.Google Scholar
Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 28, 199260.Google Scholar
Clayton, R.N., 1981. Isotopic thermometry. In: Newton, R.C., Navrotsky, A., Wood, B.J. (eds.), Thermodynamics of minerals and melts. Springer-Verlag, New York. 85109.Google Scholar
Clayton, R.N., Goldsmith, J.R., Mayeda, T.K., 1989. Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochimica et Cosmochimica Acta 53, 725733.Google Scholar
Clayton, R.N., O’Neill, J.R., Mayeda, T.K., 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research 77, 30573067.Google Scholar
Cliff, R.A., 1985. Isotopic dating in metamorphic belts. Journal of the Geological Society 142, 97110.Google Scholar
Cliff, R.A., Bond, C.E., Butler, R.W.H., Dixon, J.E., 2017. Geochronological challenges posed by continuously developing tectonometamorphic systems: Insights from Rb‐ Sr mica ages from the Cycladic Blueschist Belt, Syros (Greece). Journal of Metamorphic Geology 35, 197211.Google Scholar
Clog, M., Aubauda, C., Cartigny, P., Dosso, L., 2013. The hydrogen isotopic composition and water content of southern Pacific MORB: A reassessment of the D/H ratio of the depleted mantle reservoir. Earth and Planetary Science Letters 381, 156165.Google Scholar
Cohen, A.S., Coe, A.L., Bartlett, J.M., Hawkesworth, C.J., 1999. Precise Re–Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth and Planetary Science Letters 167, 159173.Google Scholar
Coleman, M.L., 1977. Sulphur isotopes in petrology. Journal of the Geological Society 133, 593608.Google Scholar
Coleman, M.L., Raiswell, R., 1981. Carbon, oxygen and sulphur isotope variations in concretions from the Upper Lias of NE England. Geochimica et Cosmochimica Acta 45, 329340.CrossRefGoogle Scholar
Collerson, K.D., Kamber, B.S., 1999. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283, 15191522.Google Scholar
Collerson, K.D., Campbell, L.M., Weaver, B.L., Palacz, Z.A. 1991. Evidence for extreme mantle fractionation in early Archaean ultramafic rocks from northern Labrador. Nature 349, 209214.Google Scholar
Collins, W. J., Murphy, J.B., Johnson, T.E., Huang, H.-Q., 2020. Critical role of water in the formation of continental crust. Nature Geoscience 13, 331338.Google Scholar
Coltice, N., Ferrachat, S., Ricard, Y., 2000. Box modelling the chemical evolution of geophysical systems: Case study of the Earth’s mantle. Geophysical Research Letters 27, 15791582.CrossRefGoogle Scholar
Compston, W, Williams, I.S., Meyer, C., 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research 89, Supplement, B525B534.Google Scholar
Condie, K.C., 2005. High field strength element ratios in Archaean basalts: A window to evolving sources of mantle plumes? Lithos 79, 491504.Google Scholar
Condie, K., 2015. Changing tectonic setting through time: Indiscriminate use of geochemical discriminant diagrams. Precambrian Research 266, 587591.CrossRefGoogle Scholar
Condie, K.C., Aster, R.C., 2010. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research 180, 227236.Google Scholar
Condie, K.C., Wronkiewicz, D.J., 1990. A new look at the Archaean-Proterozoic boundary sediments and the tectonic setting constraint. In: Developments in Precambrian Geology. Elsevier. 8: 6183.Google Scholar
Condie, K.C., Wilks, M., Rosen, D.M., Zlobin, V.L., 1991. Geochemistry of metasediments from the Precambrian Hapschan series, eastern Anabar Shield, Siberia. Precambrian Research 50, 3747.Google Scholar
Coogan, L.A., Dosso, S.E., 2016. Quantifying parental MORB trace element compositions from eruptive prodicts of realistic magma chambers: Parental EPR MORB are depleted. Journal of Petrology 57, 21052126.Google Scholar
Cortés, J.A., 2009. On the Harker variation diagrams: A comment on ‘The statistical analysis of compositional data. Where are we and where should we be heading? by Aitchison and Egozcue (2005). Mathematical Geosciences 41, 817828.Google Scholar
Coryell, C.G., Chase, J.W., Winchester, J.W., 1963. A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns. Journal of Geophysical Research 68, 559566.Google Scholar
Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979, The interpretation of igneous rocks. George, Allen and Unwin, London.Google Scholar
Cox, R., Lowe, D.R., Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta 59(14), 29192940.Google Scholar
Craig, H., 1961. Isotopic variations in meteoric waters. Science 133, 17021703.CrossRefGoogle ScholarPubMed
Cribb, J.-W., Barton, M., 1996. Geochemical effects of decoupled fractional crystallisation and crustal assimilation. Lithos 37, 293307.Google Scholar
Crockford, P.W., et al., 2019. Claypool continued: Extending the isotopic record of sedimentary sulfate. Chemical Geology 513, 200225.Google Scholar
Cross, W., Iddings, J.P., Pirsson, L.V., Washington, H.S., 1902. Quantitative classification of igneous rocks: Based on chemical and mineral characters, with a systematic nomenclature. University of Chicago Press.Google Scholar
Crow, M.J., Van Waveren, I.M., Hasibuan, F., 2019. The geochemistry, tectonic and palaeogeographic setting of the Karing Volcanic Complex and the Dusunbaru pluton, an early Permian volcanic-plutonic centre in Sumatra, Indonesia. Journal of Asian Earth Sciences 169, 257283.CrossRefGoogle Scholar
Cullers, R.L., 1988. Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, U.S.A. Lithos 21, 301314.Google Scholar
Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian ages, Colorado, USA: Implications for provenance and metamorphic studies. Lithos 51, 181203.Google Scholar
Cullers, R.L., Basu, A., Suttner, L.J., 1988. Geochemical signature of provenance in sand-sized material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. Chemical Geology 70, 335348.Google Scholar
Dalpe, C., Baker, D.R., 2000. Experimental investigation of large-ion-lithophile-element, high-field-strength-element and rare-earth-element-partitioning between calcic amphibole and basaltic melt: The effects of pressure and oxygen fugacity. Contributions to Mineralogy and Petrology 140, 233250.Google Scholar
Dasgupta, R., Hirschmann, M.M., 2010. The deep carbon cycle and melting in Earth’s interior. Earth and Planetary Science Letters 298, 113.Google Scholar
Daunis-I-Estadella, J., Barcelo-Vidal, C., Buccianti, A., 2006. Exploratory compositional data analysis. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds.), Compositional data analysis in the geosciences: From theory to practice. Geological Society Special Publication 264. Geological Society, London. 161174.Google Scholar
Dauphas, N., John, S., Rouxel, O., 2017. Iron isotope systematics. Reviews in Mineralogy and Geochemistry 82, 415510.CrossRefGoogle Scholar
Davis, F.A., Humayun, M., Hirschmann, M.M., Cooper, R.S., 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta 104, 232260.Google Scholar
Davis, J.C., 2002. Statistics and data analysis in Geology, 3rd ed. Wiley and Sons, Hoboken, NJ.Google Scholar
Day, J.M.D., Brandon, A.D., Walker, R.A., 2016. Highly siderophile elements in earth, mars, the moon, and asteroids. Reviews in Mineralogy & Geochemistry 81, 161238.Google Scholar
de Graaf, S., Nooitgedacht, C.W., Le Goff, J., van der Lubbe, J.H.J.L. Vonhof, H.B., Reijmer, J.J.G., 2019. Fluid-flow evolution in the Albanide fold-thrust belt: Insights from hydrogen and oxygen isotope ratios of fluid inclusions. American Association of Petroleum Geologists Bulletin 103, 24212445.Google Scholar
de Hoog, J.C.M., Taylor, B.E., van Bergen, M.J., 2001. Sulfur isotope systematics of basaltic lavas from Indonesia: Implications for the sulfur cycle in subduction zones. Earth and Planetary Science Letters 189, 237252.CrossRefGoogle Scholar
de la Roche, H., Leterrier, J., Grande Claude, P., Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses: Its relationships and current nomenclature. Chemical Geology 29, 183210.CrossRefGoogle Scholar
de Moor, J.M., Fischer, T.P., Sharp, Z.D., Hilton, D.R., Barry, P.H., Mangasini, F., Ramirez, C., 2013. Gas chemistry and nitrogen isotope compositions of cold mantle gases from Rungwe Volcanic Province, southern Tanzania. Chemical Geology 339, 3042.Google Scholar
Deines, P., 2002. The carbon isotope geochemistry of mantle xenoliths. Earth Science Reviews. 58, 247278.Google Scholar
Deines, P., Gold, D.P, 1973. The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochimica et Cosmochimica Acta 37, 17091733.Google Scholar
Deines, P., Stachel, T., Harris, J.W., 2009. Systematic regional variations in diamond carbon isotopic compositions and inclusion chemistry beneath the Orapa kimberlite cluster in Botswana. Lithos 112, 776784.CrossRefGoogle Scholar
Delavault, H., Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Marschall, H., Edinburgh Ion Microprobe Facility, 2016. Tectonic settings of continental crust formation: Insights from Pb isotopes in feldspar inclusions in zircon. Geology 44, 819822.CrossRefGoogle Scholar
Delbari, M., Afrasiab, P., Loiskandl, W., 2011. Geostatistical analysis of soil texture fractions on the field scale. Soil and Water Resources 6, 173189.CrossRefGoogle Scholar
Demetriades, A., 2014. Basic considerations: Sampling, the key for a successful applied geochemical survey for mineral exploration and environmental purposes. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 131.Google Scholar
Demšar, U., Harris, P., Brunsdon, C., Fotheringham, S., McLoone, S., 2013. Principal component analysis on spatial data: An overview. Annals of the Association of American Geographers 103, 106128.CrossRefGoogle Scholar
Deng, Z., Chaussidon, M., Guitreau, M., Puchtel, I.S., Dauphas, N., Moynier, F., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nature Geoscience 12, 774778.Google Scholar
Denny, A.C., Orland, I.J., Valley, J.W., 2020. Regionally correlated oxygen and carbon isotope zonation in diagenetic carbonates of the Bakken formation. Chemical Geology 531, 119327.Google Scholar
DePaolo, D.J., 1981a. Neodymium isotopes in the Colorado Front range and crust–mantle evolution in the Proterozoic. Nature 291, 193196.Google Scholar
DePaolo, D.J., 1981b. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth and Planetary Science Letters 53, 189202.CrossRefGoogle Scholar
DePaolo, D.J., 1988. Neodymium isotope geochemistry: An introduction. Springer Verlag, Berlin.CrossRefGoogle Scholar
DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters 3, 249252.CrossRefGoogle Scholar
DePaolo, D.J., Wasserburg, G.J., 1979. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochimica et Cosmochimica Acta 43, 615627.Google Scholar
Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Storey, C.D., 2012. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 13341336.Google Scholar
Dhuime, B., Wuestefeld, A., Hawkesworth, C.J., 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience 8, 552555.Google Scholar
Dickson, J.A.D., 1991. Disequilibrium carbon and oxygen isotope variations in natural calcite. Nature 353, 842844.CrossRefGoogle Scholar
Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40, 259274.CrossRefGoogle Scholar
Dodson, M.H., 1979. Theory of cooling ages. In: Jager, E., Hunziker, J.C. (eds.), Lectures in isotope geology. Springer-Verlag, New York. 194202.Google Scholar
Dodson, M.H., 1982. On ‘spurious’ correlations in Rb-Sr isochron diagrams. Lithos 15, 215219.CrossRefGoogle Scholar
Doe, B.R., Zartman, R.E., 1979. Plumbotectonics I, the Phanerozoic. In: Barnes, H.L. (ed.), Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley-Interscience, New York. 2270.Google Scholar
Dottin, J.W., Labidi, J., Lekic, V., Jackson, M.G., Farquhar, J., 2020. Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth and Planetary Science Letters 534, 116073.CrossRefGoogle Scholar
Drake, M.J., Holloway, J.R., 1981. Partitioning of Ni between olivine and silicate melt: the ‘Henry’s Law problem’ re-examined. Geochimica et Cosmochimica Acta 45, 431437.Google Scholar
Drake, M.J., Weill, D.F., 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquid: An experimental study. Geochimica et Cosmochimica Acta 39, 689712.Google Scholar
Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite‐tonalite‐dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth 95(B13), 2150321521.Google Scholar
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional textures. American Association of Petroleum Geologists Memoir 1, 108121.Google Scholar
Dunn, T., 1987. Partitioning of Hf, Lu, Ti and Mn between olivine, clinopyroxene and basaltic liquid. Contributions to Mineralogy and Petrology 96, 476484.Google Scholar
Dunn, T., Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study. Geochimica et Cosmochimica Acta 58, 717733.Google Scholar
Dupre, B., Allegre, C.J., 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142146.CrossRefGoogle Scholar
Ebadi, A., Johannes, W., 1991. Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2. Contribution to Mineralogy and Petrology 106, 286295.Google Scholar
Egozcue, J.J., 2009. Reply to ’On the Harker Variation Diagrams …’ by JA Cortes. Mathematical Geosciences 41, 829834.CrossRefGoogle Scholar
Egozcue, J., Pawlowsy-Glahn, V., Mateu-Figueras, G., Barcelo-Vidal, C., 2003. Isometric logratio transformations for compositional data analysis. Mathematical Geology 35, 279300.CrossRefGoogle Scholar
Eguchi, J., Seales, J., Dasgupta, R., 2020. Great oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nature Geoscience 12, 7176.Google Scholar
Eiler, J.M., 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Reviews in Mineralogy and Geochemistry 43(1), 319364.Google Scholar
Eiler, J.M., 2007. ‘Clumped-isotope’ geochemistry: The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters 262, 309327.Google Scholar
Eiler, J.M., Kitchen, N., 2004. Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites. Geochimica et Cosmochimica Acta 68, 13951411.Google Scholar
Eisele, J., Sharma, M., Galer, S.J., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters 196, 197212.Google Scholar
Eissen, J.-P., Juteau, T., Joron, J.-L., Dupre, B., Humler, E., Al’Mukhamedov, A., 1989. Petrology and geochemistry of basalts from the Red Sea axial rift at 18 deg north. Journal of Petrology 30, 791839.Google Scholar
Elardo, S.M., Shahar, A., Mock, T.D., Sio, C.K., 2019. The effect of core composition on iron isotope fractionation between planetary cores and mantles. Earth and Planetary Science Letters 513, 124134.Google Scholar
Elderfield, H., 1988. The oceanic chemistry of the rare-earth elements. Philosophical Transactions of the Royal Society of London A325, 105126.Google Scholar
El-Hinnawi, E., 2016a. Evaluation of boundary lines in the total alkali-silica diagram for the discrimination between subalkali and alkali basalts, and a new method to distinguish transitional basalts. Periodico di Mineralogia 85, 5158.Google Scholar
El-Hinnawi, E., 2016b. A new method for the adjustment of Fe2O3/FeO ratio in volcanic rocks for the calculation of the CIPW norm. Neues Jahrbuch fűr Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry 193, 8793.Google Scholar
Elliott, T., Thomas, A., Jeffcoate, A., Niu, Y., 2006. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443, 565568.Google Scholar
Elthon, D., 1983. Isomolar and isostructural pseudo-liquidus phase diagrams for oceanic basalts. American Mineralogist 68, 506511.Google Scholar
Epstein, G.S., Bebout, G.E., Angiboust, S., Agard, P., 2020. Scales of fluid-rock interaction and carbon mobility in the deeply underplated and HP-metamorphosed schistes lustrés, western Alps. Lithos 354–355, 105229.Google Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., 1953. Revised carbonate–water isotopic temperature scale. Geological Society of America Bulletin 64, 13151326.Google Scholar
Escoube, R., Rouxel, O.J., Pokrovsky, O.S., Schroth, A., Holmes, R.M., Donard, O.F.X., 2015. Iron isotope systematics in Arctic rivers. Comptes Rendus Geoscience 347, 377385.Google Scholar
Escrig, S., Schiano, P., Schilling, J.G., Allegre, C., 2005. Rhenium–osmium isotope systematics in MORB from the southern Mid-Atlantic Ridge (40–50 S). Earth and Planetary Science Letters 235, 528548.Google Scholar
Evensen, N.M., Hamilton, P.J., O’Nions, R.K., 1978. Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42, 11991212.Google Scholar
Ewart, A., 1982. The mineralogy and petrology of Tertiary-recent orogenic volcanic rocks with special reference to the andesitic-basaltic composition range. In: Thorpe, R.S. (ed.), Andesites. Wiley, Chichester. 2587.Google Scholar
Falloon, T.J., Danyushevsky, L.V., Green, D.H., 2001. Peridotite melting at 1 GPa: Reversal experiments on partial melt compositions produced by peridotite–basalt sandwich experiments. Journal of Petrology 42, 23632390.Google Scholar
Farkas, J., Chrastny, V., Novak, M., Cadkova, E., Pasava, J., Chakrabarti, R., Jacobsen, S.B., Ackerman, L., Bullen, T.D., 2013. Chromium isotope variations (δ53Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53Cr in the Earth’s mantle over geologic time. Contributions to Mineralogy and Petrology 123, 7492.Google Scholar
Farley, K.A., 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research 105, 29032914.Google Scholar
Farley, K.A., 2007. He diffusion systematics in minerals: Evidence from synthetic monazite and zircon structure phosphates. Geochimica et Cosmochimica Acta 71, 40154024.Google Scholar
Farley, K.A., Natland, J.H., Craig, H., 1992. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth and Planetary Science Letters 111, 183199.CrossRefGoogle Scholar
Farmer, G.L., 2014. Continental basaltic rocks. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 4: 75110.Google Scholar
Farquhar, J., Wing, B.A., 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters 213, 113.Google Scholar
Farquhar, J., Wing, B.A., McKeegan, K.D., Harris, J.W., Cartigny, P., Thiemens, M.H., 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 23692372.Google Scholar
Farrel, J., Clemens, S., Gromet, L.P., 1995. Improved chronostratigraphic reference curve of late Neogene seawater 87Sr/86Sr. Geology 23, 403406.Google Scholar
Fazio, G., Mendes Guimarães, E., Walde, D.W.G., do Carmo, D.A., Adorno, R.R., et al., 2019. Mineralogical and chemical composition of Ediacaran-Cambrian pelitic rocks of the Tamengo and Guaicurus formations (Corumbá Group – MS, Brazil): Stratigraphic positioning and paleoenvironmental interpretations. Journal of South American Earth Sciences 90, 487503.CrossRefGoogle Scholar
Fedo, C.M., McGlynn, I.O., McSween, H.Y., Jr, 2015. Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting Martian soils. Earth and Planetary Science Letters 423, 6777.Google Scholar
Fedo, C.M., Wayne Nesbitt, H., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10), 921924.Google Scholar
Fiege, A., Holtz, F., Behrens, H., Mandeville, C., Shimizu, N., Crede, L.-S., Goettlicher, J., 2015. Experimental investigation of the S and S-isotope distribution between H2O-S ± Cl fluids and basaltic melts during decompression. Chemical Geology 393–394, 3654.CrossRefGoogle Scholar
Fitton, J.G., 1997. X-ray fluorescence spectrometry. In: Gill, R. (ed.), Modern analytical geochemistry: An introduction to quantitative chemical analysis for earth, environmental and material scientists. Addison Wesley Longman, Harlow.Google Scholar
Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S., Taylor, R.N., 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters 153, 197208.Google Scholar
Fletcher, I.R., Rosman, K.J.R., 1982. Precise determination of initial e-Nd from Sm-Nd isochron data. Geochimica et Cosmochimica Acta 46, 19831987.CrossRefGoogle Scholar
Fletcher, T.A., Boyce, A.J., Fallick, A.E., 1989. A sulphur isotope study of Ni-Cu mineralisation in the Huntly-Knock Caledonian mafic and ultramafic intrusions of northeast Scotland. Journal of the Geological Society 146, 675684.Google Scholar
Floyd, P.A., Winchester, J.A., 1975. Magma-type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters 27, 211218.CrossRefGoogle Scholar
Floyd, P.A., Shail, R., Leveridge, B.E., Franke, W., 1991. Geochemistry and provenance of Rhenohercynian synorogenic sandstones: Implications for tectonic environment discrimination. Geological Society Special Publication 57. Geological Society, London. 173188.Google Scholar
Floyd, P.A., Winchester, J.A., Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree group of Gairloch, NW Scotland. Precambrian Research 45, 203214.Google Scholar
Fogel, M.L., Steele, A., 2013. Nitrogen in extraterrestrial environments: Clues to the possible presence of life. Elements 9, 367372.Google Scholar
Foland, K.A., 1994. Argon diffusion in feldspars. In: Parsons, I. (ed.), Feldspars and their reactions. Kluwer, Amsterdam. 415447.Google Scholar
Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837840.Google Scholar
Folk, R.L., 1959. Practical petrographic classification of limestones. American Association of Petroleum Geologists Bulletin 43, 138.Google Scholar
Foustoukos, D.I., James, R.H., Berndt, M.E., Seyfried, W.E., 2004. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chemical Geology 212, 1726.Google Scholar
Fowler, S.J., Bohrson, W.A., Spera, F.J., 2004. Magmatic evolution of the Skye Igneous Centre, western Scotland: Modelling of assimilation, recharge and fractional crystallization. Journal of Petrology 45, 24812505.Google Scholar
France, L., Ouillon, N., Chazot, N, Kornprobst, J., Boivin, P., 2009. CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system. Computers and Geosciences 35, 13041310.CrossRefGoogle Scholar
Frank, A.B., Klaebe, R.B., Lohr, S., Xu, L., Frei, R., 2020. Chromium isotope composition of organic-rich marine sediments and their mineral phases and implications for using black shales as a paleoredox archive. Geochimica et Cosmochimica Acta 270, 338359.Google Scholar
Frank, M., 2002. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Reviews of Geophysics 40, 138.CrossRefGoogle Scholar
Frei, R., Polat, A., 2013. Chromium isotope fractionation during oxidative weathering: Implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada. Precambrian Research 224, 434453.CrossRefGoogle Scholar
Friedman, I., O’Neill, J.R., 1977. Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest. US Geological Survey Professional Paper 440-KK.Google Scholar
Frost, B.R., Frost, C.D., 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology 49, 19551969.Google Scholar
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 20332048.Google Scholar
Fukuda, K., Beard, B.L., Dunlap, D.R., Spicuzzaa, M.J., Fournelle, J.H., Wadhwa, M., Kita, N.T., 2020. Magnesium isotope analysis of olivine and pyroxene by SIMS: Evaluation of matrix effects. Chemical Geology 540, 119482.Google Scholar
Gabriel, K.R., 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58, 453467.Google Scholar
Gaetani, G.A, Kent, A.J.R., Grove, T.L., Hutcheon, D., Stolper, E.M., 2003. Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contributions to Mineralogy and Petrology 145, 391405.Google Scholar
Galy, A., France-Lanord, C., 2001. Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology 29, 2326.Google Scholar
Ganguly, J., Tirrone, M., Hervig, R.L., 1998. Diffusion kinetics of samarium and neodymium in garnet, and a method for determining cooling rates of rocks. Science 281, 805807.Google Scholar
Garapić, G., Jackson, M.G., Hauri, E.H., Hart, S.R., Farley, K.A., Blusztajn, J.S., Woodhead, J.D., 2015. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1). Lithos 228, 111.Google Scholar
Garcia, M.O., Mucek, A.E., Lynn, K.J., Swanson, D.A., Norman, M.D., 2018. Geochemical evolution of Keanakāko ‘i Tephra, Kīlauea Volcano, Hawai‘i. In: Field volcanology: A tribute to the distinguished career of Don Swanson. Geological Society Special Publication 538. Geological Society, London.Google Scholar
Garçon, M., Chauvel, C., 2014. Where is basalt in river sediments, and why does it matter? Earth and Planetary Science Letters 407, 6169.Google Scholar
Garzanti, E., 2019. Petrographic classification of sand and sandstone. Earth-Science Reviews 192, 545563.CrossRefGoogle Scholar
Geng, X., Liu, Y., Zhang, W., Wang, Z., Hu, Z., Zhou, L., Liang, Z., 2020. The effect of host magma infiltration on the Pb isotopic systematics of lower crustal xenolith: An in-situ study from Hannuoba, North China. Lithos, doi: 10.1016/j.lithos.2020.105556.Google Scholar
Genske, F.S., Turner, S.P., Beier, C., Chu, M.-F., Tonarini, S., Pearson, N.J., Haase, K.M., 2014. Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chemical Geology 373, 2736.Google Scholar
Gerdes, A., Zeh, A., 2006. Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth & Planetary Science Letters 249, 4761.Google Scholar
Ghiorso, M.S., Gualda, G.A.R., 2015. An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology, doi: 10.1007/s00410-015-1141-8.Google Scholar
Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119, 197212.Google Scholar
Gibson, S.A., Thompson, R.N., Dickin, A.P., 2000. Ferropicrites: Geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters 174, 355374.Google Scholar
Giletti, B.J., 1974. Studies in diffusion I: Argon in phlogopite mica. In: Hofmann, A.W., Giletti, B.J., Yoder, H.S., Jr, Yund, R.A. (eds.), Geochemical transport and kinetics. Carnegie Institute, Washington Year b Publication 634, Washington, DC. 107115.Google Scholar
Gill, J.B., 1981. Orogenic andesites and plate tectonics. Springer, Berlin.Google Scholar
Gill, R.C.O. (ed.), 1997. Modern analytical geochemistry: An introduction to quantitative chemical analysis for earth, environmental and material scientists. Addison Wesley Longman, Harlow.Google Scholar
Gilliam, C.E., Valley, J.W., 1998. Low δ18O magma, Isle of Skye, Scotland: Evidence from zircons. Geochimica et Cosmochimica Acta 61, 49754981.Google Scholar
Godefroy-Rodríguez, M., Hagemann, S., LaFlamme, C., Fiorentini, M., 2020. The multiple sulfur isotope architecture of the Golden Mile and Mount Charlotte deposits, Western Australia. Mineralium Deposita 55, 797822.CrossRefGoogle Scholar
Goldfarb, R.J., Groves, D.I., 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 233, 226.Google Scholar
Goldschmidt, V.M., 1937. The principles of the distribution of chemical elements in minerals and rocks. Journal of the Chemical Society (London) 140, 655673.Google Scholar
Goldstein, S.L., 1988. Decoupled evolution of Nd and Sr isotopes in the continental crust. Nature 336, 733738.Google Scholar
Goldstein, S.L., O’Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters 70, 221236.Google Scholar
González-Guzmán, R., 2016. NORRRM: A free software to calculate the CIPW norm. Open Journal of Geology 6, 3038. http://dx.doi.org/10.4236/ojg.2016.61004.Google Scholar
Goodwin, A.M., 1996. Principles of Precambrian geology. Academic Press, London.Google Scholar
Grady, M.M., Wright, I.P., 2003. Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Science Reviews 106, 231248.Google Scholar
Graham, C.M., Harmon, R.S., Sheppard, S.M.F., 1984. Experimental hydrogen isotope studies: Hydrogen isotope exchange between amphibole and water. American Mineralogist 69, 128138.Google Scholar
Graham, C.M., Sheppard, S.M.F., Heaton, T.H.E., 1980. Experimental hydrogen isotope studies I: Systematics of hydrogen isotope fractionation in the systems epidote–H2O, zoisite–H2O and AlO(OH)–H2O. Geochimica et Cosmochimica Acta 44, 353364.Google Scholar
Graham, D.J., Midgley, N.G., 2000. Graphical representation of particle shape using triangular diagrams: An Excel spreadsheet method. Earth Surface Processes and Landforms 25, 14731477.Google Scholar
Grandell, L., Lehtilä, A., Kivinen, M., Koljonen, T., Kihlman, S., Lauri, L.S., 2016. Role of critical metals in the future markets of clean energy technologies. Renewable Energy 95, 5362.Google Scholar
Grant, K., Wood, B., J., 2010. Experimental study of the incorporation of Li, Sc, Al and other trace elements in olivine. Geochimica et Cosmochimica Acta 74, 24122428.Google Scholar
Grassineau, N.V., Appel, P.W.U., Fowler, C.M.R., Nisbet, E.G., 2005. Distinguishing biological from hydrothermal signatures via sulphur and carbon isotopes in Archaean mineralizations at 3.8 and 2.7 Ga. In: McDonald, I., Boyce, A.J., Butler, I.B., Herrington, R.J., Polya, D.A. (eds.), Mineral deposits and Earth evolution. Geological Society Special Publication 248. Geological Society, London. 195212.Google Scholar
Green, T.H., Pearson, N.J., 1983. Effect of pressure on rare earth element partition coefficients in common magmas. Nature 305, 414416.Google Scholar
Green, T.H., Pearson, N.J., 1986. Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chemical Geology 55, 105119.CrossRefGoogle Scholar
Green, T.H., Blundy, J.D., Adam, J., Yaxley, G.M., 2000. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos 53, 165187.Google Scholar
Greenacre, M., 2010. Biplots in practice. Fundcion BBVA, Bilbao.Google Scholar
Gregory, R.T., Taylor, H.P., 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Semail ophiolite Oman: Evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research 86, 27372755.Google Scholar
Gregory, R.T., Criss, R.E., Taylor, H.P., 1989. Oxygen isotope exchange kinetics of mineral pairs in close and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations. Chemical Geology 75, 142.Google Scholar
Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The ‘North American Shale Composite’: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta 48, 24692482.CrossRefGoogle Scholar
Grove, M., Harrison, T.M., 1996. 40Ar* diffusion in Fe-rich biotite. American Mineralogist 81, 940951.Google Scholar
Grove, T.L., 1993. Corrections to expressions for calculating mineral components in ‘Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing’ and ‘Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25°N Mid-Atlantic Ridge’. Contributions to Mineralogy and Petrology 114, 422424.Google Scholar
Grove, T.L., Gerlach, D.C, Sando, T.W., 1982. Origin of late calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contributions to Mineralogy and Petrology 80, 160182.Google Scholar
Grove, T.L., Kinzler, R.J., Bryan, W.B., 1992. Fractionation of mid-ocean ridge basalt (MORB). In: Phipps Morgan, J., Blackman, D.K., Sinton, J.M. (eds.), Mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph, American Geophysical Union, 71, 281310.Google Scholar
Groves, D.I., Golding, S.D., Rock, N.M.S., Barley, M.E., McNaughton, N.J., 1988. Archean carbon reservoirs and their relevance to the fluid source for gold deposits. Nature 331, 254257.Google Scholar
Grunsky, E., de Caritat, P., 2019. State-of-the-art analysis of geochemical data for mineral exploration. Geochemistry: Exploration, Environment, Analysis, doi.org/10.1144/geochem2019–031.Google Scholar
Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., Carley, T.L., 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology 53, 875890.CrossRefGoogle Scholar
Guzman, S., Carniel, R., Caffe, P.J., 2014. AFC3D: A 3D graphical tool to model assimilation and fractional crystallization with and without recharge in the R environment. Lithos 190–191, 264278.CrossRefGoogle Scholar
Haase, K., Regelous, M., Schöbel, S, Gunther, T., de Wall, H., 2019. Variation of melting processes and magma sources of the early Deccan flood basalts, Malwa Plateau, India. Earth and Planetary Science Letters 524, 115711.CrossRefGoogle Scholar
Hall, W.E., Friedman, I., and Nash, J.T., 1974. Fluid inclusion and light stable isotope study of the Climax molybdenum deposits, Colorado. Economic Geology 69, 884901.Google Scholar
Hamilton, P.J., Evensen, N.M., O’Nions, R.K., Tarney, J., 1979a. Sm-Nd systematics of Lewisian gneisses: Implications for the origin of granulites. Nature 277, 2528.CrossRefGoogle Scholar
Hamilton, P.J, Evensen, N.M., O’Nions, R.K., Smith, H.S., Erlank, A.J., 1979b. Sm-Nd dating of Onverwacht group volcanics, southern Africa. Nature 279, 298300.Google Scholar
Hammouda, T., Cherniak, D.J., 2000. Diffusion of Sr in fluorphlogopite determined by Rutherford backscattering spectrometry. Earth and Planetary Science Letters 178, 339349.Google Scholar
Han, C., Xiao, W., Sua, B., Sayic, P.A., Aoa, S., Zhanga, J., Zhanga, Z., Wana, B., Songa, D., Wanga, Z., Zhaoal, N., 2018. Geology, Re-Os and U-Pb geochronology and sulfur isotope of the Donggebi porphyry Mo deposit, Xinjiang, NW China, Central Asian Orogenic Belt. Journal of Asian Earth Sciences 165, 270284.CrossRefGoogle Scholar
Hanan, B.B., Graham, D. 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991995.CrossRefGoogle ScholarPubMed
Hanchar, J., van Westrenen, W., 2007. Rare earth element behaviour in zircon-melt systems. Elements 3, 3742.Google Scholar
Hans, U., Kleine, T., Bourdon, B., 2013. Rb-Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters 374, 204214.Google Scholar
Hansen, C.T., Meixner, A., Kasemann, S.A., Bach, W., 2017. New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations. Geochimica et Cosmochimica Acta 217, 5179.CrossRefGoogle Scholar
Hanski, E., Huhma, H., Rastas, P., Kamenetsky, V.S., 2001. The Palaeoproterozoic komatiite-picrite association of Finnish Lapland. Journal of Petrology 42, 855876.Google Scholar
Hanson, G.N., 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters 38, 2643.Google Scholar
Harker, A., 1909. The natural history of igneous rocks. Methuen, London.Google Scholar
Harmer, R.E., Eglington, B.M., 1987. The mathematics of geochronometry: Equations for use in regression calculations. National Physical research Laboratory, geochronology division, C.S.I.R., South Africa.Google Scholar
Harnois, L., 1988. The CIW index: A new chemical index of weathering. Sedimentary Geology 55, 319322.Google Scholar
Harris, C., Faure, K., Diamond, R.E., Scheepers, R., 1997. Oxygen and hydrogen isotope geochemistry of S- and I-type granitoids: The Cape Granite suite, South Africa. Chemical Geology 143, 95114.Google Scholar
Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. In: Coward, M.P., Reis, A.C. (eds.), Collision tectonics. Geological Society Special Publication 19. Geological Society, London. 6781.Google Scholar
Harris, P.G., 1974. Origin of alkaline magmas as a result of anatexis. In: Sorenson, H. (ed.), The alkaline rocks. J. Wiley & Sons, London. 427436.Google Scholar
Harrison, L.N., Weis, D., Garcia, M.O., 2020. The multiple depleted mantle components in the Hawaiian-Emperor chain. Chemical Geology 532, 119324.Google Scholar
Harrison, T.M., 1981. Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology 78, 324331.Google Scholar
Harrison, T.M., Watson, E.B., 1984. The behaviour of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta 48, 14671477.Google Scholar
Hart, S.R., 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753757.Google Scholar
Hart, S.R., Hauri, E.H., Oschmann, L.A., Whitehead, J.A., 1992. Mantle plumes and entrainment: Isotopic evidence. Science 256, 517520.Google Scholar
Haskin, L.A., Haskin, M.A., Frey, F.A., Wildman, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In: Pepin, R.O., Ahrens, L.H. (eds.), Origin and distribution of the elements. Pergamon, Oxford. 889911.CrossRefGoogle Scholar
Hastings, M.G., Casciotti, K.L., Elliott, E.M., 2013. Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts. Elements 9, 339344.CrossRefGoogle Scholar
Hauri, E.H., Hart, S., 1993. Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the South Pacific Ocean. Earth and Planetary Science Letters 114, 353371.Google Scholar
Hauri, E.H., Papineau, D., Wang, J., Hillion, F., 2016. High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chemical Geology 420, 418161.Google Scholar
Hawkesworth, C.J., van Calsteren, P.W.C., 1984, Radiogenic isotopes: Some geological applications. In: Henderson, P. (ed.), Rare earth element geochemistry. Elsevier, Amsterdam. 375421.Google Scholar
Heinonen, J.S., Luttinen, A.V., Bohrson, W.A., 2016. Enriched continental flood basalts from depleted mantle melts: Modeling the lithospheric contamination of Karoo lavas from Antarctica. Contributions to Mineralogy and Petrology 171(1), 9.Google Scholar
Heinonen, J.S., Luttinen, A.V., Spera, F.J., Bohrson, W.A., 2019. Deep open storage and shallow closed transport system for a continental flood basalt sequence revealed with Magma Chamber Simulator. Contributions to Mineralogy and Petrology 174, 87.Google Scholar
Hemming, S.R., McLennan, S.M., 2001. Pb isotope compositions of modern deep sea turbidites. Earth and Planetary Science Letters 184, 489503.Google Scholar
Henchiri, S., Gaillardet, J., Dellinger, M., Bouchez, J., Spencer, R.G.M., 2016. Riverine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes. Geophysical Research Letters 43, 43914399.Google Scholar
Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology 58, 820829.Google Scholar
Herron, M.M., Herron, S.L., 1990. Geological applications of geochemical well logging. In: Hurst, A., Lovell, M.A., Morton, A.C. (eds.), Geological applications of wireline logs. Geological Society Special Publication 48. Geological Society, London. 165175.Google Scholar
Hertogen, J., Gijbels, R., 1976. Calculation of trace element fractionation during partial melting. Geochimica et Cosmochimica Acta 40, 313322.Google Scholar
Herzberg, C., 2004. Geodynamic information in peridotite petrology. Journal of Petrology 45, 25072530.Google Scholar
Herzberg, C., O’Hara, M.J., 2002. Plume associated ultramafic magmas of Phanerozoic age. Journal of Petrology 43, 18571883.Google Scholar
Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle, M.J., Saunders, A.D., 2007. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites and komatiites. Geochemistry, Geophysics, Geosystems 8, doi: 10.1029/2006GC001390.Google Scholar
Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters 292(1–2), 7988.Google Scholar
Hickson, C.J., Juras, S.J., 1986. Sample contamination and grinding. Canadian Mineralogist 24, 585589.Google Scholar
Hildreth, W., 1981. Gradients in silicic magma chambers: Implications for lithospheric magmatism. Journal of Geophysical Research 86, B10153B10192.Google Scholar
Hill, P.S., Schauble, E.A., Tripati, A., 2020. Theoretical constraints on the effects of added cations on clumped, oxygen, and carbon isotope signatures of dissolved inorganic carbon species and minerals. Geochimica et Cosmochimica Acta 269, 496539.Google Scholar
Hinton, R.W., 1994. Ion microprobe analysis in geology. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds.), Microprobe techniques in the Earth sciences. 235–289.Google Scholar
Hoefs, J., 2018. Stable isotope geochemistry, 8th ed. Springer, Cham.Google Scholar
Hoernle, K., Tilton, G., Schmincke, H.-U., 1991. Sr-Nd-Pb isotopic evolution of Gran Canaria: Evidence for shallow enriched mantle beneath the Canary Islands. Earth and Planetary Science Letters 106, 4463.Google Scholar
Hofer, G., Wagreich, M., Neuhuber, S., 2013. Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): Implications for paleoenvironmental and provenance studies. Geoscience Frontiers 4, 449468.Google Scholar
Hoffman, E.L., 1992. Instrumental neutron activation in geoanalysis. Journal of Geochemical Exploration 44, 297319.Google Scholar
Hoffmann, J.E., Münker, C., Polat, A., König, S., Mezger, K., Rosing, M.T., 2010. Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. Geochimica et Cosmochimica Acta 74, 72367260.Google Scholar
Hoffmann, J.E., Münker, C., Polat, A., Rosing, M.T., Schulz, T., 2011. The origin of decoupled Hf–Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochimica et Cosmochimica Acta 75, 66106628.Google Scholar
Hofmann, A.W., 2014. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Holland, H., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 3: 67101.Google Scholar
Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters 79, 3345.Google Scholar
Hoiland, C., Miller, E., Pease, V., 2018. Greenschist facies metamorphic zircon overgrowths as a constraint on exhumation of the Brooks Range metamorphic core, Alaska. Tectonics, doi: 10.1029/2018TC005006.Google Scholar
Hoiland, C.W., Miller, E.L., Pease, V., Hourigan, J., 2017. Detrital zircon U–Pb geochronology and Hf isotope geochemistry of metasedimentary strata in the southern Brooks Range: Constraints on Neoproterozoic–Cretaceous evolution of Arctic Alaska. Geological Society Special Publication 460. Geological Society, London.Google Scholar
Holz, F., Pichavant, M., Barbey, P., Johannes, W., 1992. Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. American Mineralogist 77, 12231241.Google Scholar
Hooker, P.J., Hamilton, P.J., O’Nions, R.K., 1981. An estimate of the Nd isotopic composition of Iapetus seawater from ca. 490 Ma metalliferous sediments. Earth and Planetary Science Letters 56, 180188.Google Scholar
Horita, J., 2005. Some perspectives on isotope biosignatures for early life. Chemical Geology 218, 171188.Google Scholar
Horita, J., Polyakov, V.B., 2015. Carbon-bearing iron phases and the carbon isotope composition of the deep earth. Proceedings of the National Academy of Sciences 112, 3136.Google Scholar
Hu, Y., Teng, F.-Z., Ionov, D.A., 2020. Magnesium isotopic composition of metasomatized upper sub-arc mantle and its implications to Mg cycling in subduction zones. Geochimica et Cosmochimica Acta 278, 219234.Google Scholar
Hu, Z., Qi, L., 2014. Sample digestion methods. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 88109.Google Scholar
Huang, F., Lundstrom, C.C., McDonough, W.F., 2006. Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. American Mineralogist 91(8–9), 13851400.Google Scholar
Huang, W.-L., Wyllie, P.J., 1975. Melting relations in the system NaAlSi3O8– KAlSi3O8–SiO2 to 35 kilobars, dry and excess water. Journal of Geology 83, 737748.CrossRefGoogle Scholar
Huebner, M., Kyser, T.K., Nisbet, E.G., 1986. Stable-isotope geochemistry of the high-grade metapelites from the Central zone of the Limpopo belt. American Mineralogist 71, 13431353.Google Scholar
Hughes, H.S.R., McDonald, I., Goodenough, K.M., Ciborowsk, T.J.R., Kerr, A.C., Davies, J.H.F.L., Selby, D., 2014. Enriched lithospheric mantle keel below the Scottish margin of the North Atlantic Craton: Evidence from the Palaeoproterozoic Scourie Dyke Swarm and mantle xenoliths. Precambrian Research 250, 97126.Google Scholar
Humphries, S.E., 1984. The mobility of the rare earth elements in the crust. In: Henderson, P. (ed.), Rare earth element geochemistry. Elsevier, Amsterdam. 315341.Google Scholar
Iizuka, T., Yamaguchi, T., Hibiya, Y., Amelin, Y., 2015. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth. Proceedings of the National Academy of Sciences 112, 53315336.Google Scholar
Ikin, N.P., Harmon, R.S., 1983. A stable isotope study of serpentinization and metamorphism in the Highland Border Suite, Scotland, U.K. Geochimica et Cosmochimica Acta 47, 153167.Google Scholar
Ingersoll, R., 2011. Tectonics of sedimentary basins, with revised nomenclature. In: Busby, C., Azor, A. (eds.), Tectonics of sedimentary basins: Recent advances. Wiley, Chichester. 143.Google Scholar
Innocenti, F., Manetti, P., Mazzuuoli, R., Pasquare, G., Villari, L., 1982. Anatolia and north-western Iran. In: Thorpe, R.S. (ed.), Andesites. Wiley, Chichester. 327349.Google Scholar
Ionov, D.A., Shirey, S.B., Weis, D., Brügmann, G., 2006. Os–Hf–Sr–Nd isotope and PGE systematics of spinel peridotite xenoliths from Tok, SE Siberian craton: Effects of pervasive metasomatism in shallow refractory mantle. Earth and Planetary Science Letters 241, 4764.Google Scholar
Ireland, T., 2014. Ion microscopes and microprobes. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 385409.Google Scholar
Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523548.Google Scholar
Irving, A.J., Frey, F.A., 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta 42, 771787.Google Scholar
Iveson, A.A., Rowe, M.C., Webster, J.D., Neil, O.K., 2018. Amphibole-, clinopyroxene- and plagioclase-melt partitioning of trace and economic metals in halogen-bearing rhyodacitic melts. Journal of Petrology 59, 15971604.Google Scholar
Jackson, D.H., Mattey, D.P., Harris, N.B.W., 1988. Carbon isotope compositions of fluid inclusions in charnockites from southern India. Nature 333, 167170.Google Scholar
Jackson, M.G., Shirey, S.B., 2011. Re–Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth and Planetary Science Letters 312, 91101.Google Scholar
Jackson, M.G., Hart, S.R., Koppers, A.P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M., Russell, J.A. 2007. The return of subducted continental crust in Samoan lavas. Nature 448, 684687.Google Scholar
Jackson, M.G., Shirey, S.B., Hauri, E.H., Kurz, M.D., Rizo, H., 2016. Peridotite xenoliths from the Polynesian Austral and Samoa hotspots: Implications for the destruction of ancient 187Os and 142Nd isotopic domains and the preservation of Hadean 129Xe in the modern convecting mantle. Geochimica et Cosmochimica Acta 185, 2143.Google Scholar
Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters 50, 139155.Google Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spottel, B., Lorenz, V., Wanke, H., 1979. The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proceedings of the Lunar and Planetary Science Conference 10. Geochimica et Cosmochimica Acta Supplement 11, 20312050.Google Scholar
James, D.E., 1981. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annual Review of Earth and Planetary Sciences 9, 311344.Google Scholar
James, R.S., Hamilton, D.L., 1969. Phase relations in the system NaAlSi3O8–KAlSi3O8–CaAlSi3O8–SiO2 at 1 kilobar water vapour pressure. Contributions to Mineralogy and Petrology 21, 111141.Google Scholar
Janousek, V., Moyen, J.F., Martin, H., Erban, V., Farrow, C., 2016. Geochemical modelling of igneous processes – Principles and recipes in R language: Bringing the power of R to a geochemical community. Springer-Verlag, Berlin.Google Scholar
Jarvis, K.E., Williams, J.G., 1989. The analysis of geological samples by slurry nebulisation inductively coupled plasma-mass spectrometry (ICP-MS). Chemical Geology 77, 5363.Google Scholar
Javoy, M., 1977. Stable isotopes and geothermometry. Journal of the Geological Society 133, 609636.Google Scholar
Javoy, M., Fourcade, S., Allegre, C.J., 1970. Graphical method for examining 18O/16O fractionation in silicate rocks. Earth and Planetary Science Letters 10, 1216.Google Scholar
Jenkin, G., 1997. Mode effects on cooling rate estimates from Rb–Sr data. Geology 25, 907910.Google Scholar
Jenkin, G., Roger, G., Fallick, A.E., Farrow, C.M., 1995. Rb–Sr closure temperatures in bi-mineralic rocks; a mode effect and test for different diffusion models. Chemical Geology (Isotope Geoscience) 122, 227240.Google Scholar
Jenner, F.E., O’Neill, H.St.C., 2012. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochemistry, Geophysics, Geosystems 13, doi: 10.1029/2011GC004009.Google Scholar
Jensen, L.S., 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Division of Mines Miscellaneous Paper 66.Google Scholar
Jensen, L.S., Pyke, D.R., 1982. Komatiites in the Ontario portion of the Abitibi belt. In: Arndt, N.T., Nisbet, E.G. (eds.), Komatiites. George Allen and Unwin, London. 147157.Google Scholar
Jia, Y., Kerrich, R., 2015. N-isotope composition of the primitive mantle compared to diamonds. Lithos 233, 131138.Google Scholar
Jochum, K.P., Enzweiler, J., 2014. Reference materials in geochemical and environmental research. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 4370.Google Scholar
Jochum, K.P., Seufert, H.M., Thirlwall, M.F., 1990. High-sensitivity Nb analysis by spark source mass spectrometry (SSMS) and calibration of XRF Nb and Zr. Chemical Geology 81, 116.Google Scholar
Johannes, W., Holz, F., 1996. Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin.Google Scholar
Johnson, C.M., Beard, B.L., Albarede, F., 2004. Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry 55. Mineralogical Society of America, Washington DC.Google Scholar
Johnson, C.M., Beard, B.L., Weyer, S., 2020. Iron geochemistry: An isotopic perspective. Springer-Nature, Cham.Google Scholar
Johnsson, M.J., 1993. The system controlling the composition of clastic sediments. Geological Society of America, Special Paper 284.Google Scholar
Johnston, D.T., 2011. Multiple sulfur isotopes and the evolution of the Earth’s surface sulfur cycle. Earth-Science Reviews 106, 161183.Google Scholar
Jørgensen, B.B., Findlay, A.J., Pellerin, A., 2019. The biogeochemical sulfur cycle of marine sediments. Frontiers in Microbiology 10, article 849.Google Scholar
Jouzel, J., Koster, R.D., 1996. A reconsideration of the initial conditions used for stable water isotope models. Journal of Geophysical Research D101, 2293322938.Google Scholar
Jouzel, J., et al., 1997. Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research 102C, 471487.Google Scholar
Kamber, B.S., 2015. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Research 258, 4882.Google Scholar
Kamber, B.S., Webb, G.E., 2001. The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta 65, 25092525.Google Scholar
Kamber, B.S., Bolhar, R., Webb, G.E., 2004. Geochemistry of late Archaean stromatolites from Zimbabwe: Evidence for microbial life in restricted epicontinental seas. Precambrian Research 132, 379399.Google Scholar
Kamber, B.S., Greig, A., Collerson, K.D., 2005. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochimica et Cosmochimica Acta 69, 10411058.Google Scholar
Kämpf, L., Plessen, B., Lauterbach, S., Nantke, C., Meyer, H., Chapligin, B., Brauer, A., 2020. Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy. Geology 48, doi: 10.1130/G46593.1.Google Scholar
Keith, M., Haase, K.M., Klemd, R., Krumm, S., Strauss, H., 2016. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chemical Geology 423, 718.Google Scholar
Kelemen, P.B., 1990. Reaction between ultramafic rock and fractionating basaltic magma. I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. Journal of Petrology 31, 5198.Google Scholar
Kelemen, P.B., Shimizu, N., Salters, V.J., 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747753.Google Scholar
Kelley, K.A., Cottrell, E., 2009. Water and the oxidation state of subduction zone magmas. Science 325, 605607.Google Scholar
Kelsey, C.H., 1965. Calculation of the CIPW norm. Mineralogical Magazine 34, 276282.Google Scholar
Kelsey, D.E., Clark, C., Hand, M., 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology 26, 199212.Google Scholar
Kemp, A., Hawkesworth, C., 2014. Growth and differentiation of the continental crust from isotope studies of accessory minerals. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 4: 379421.Google Scholar
Kemp, A., Whitehouse, M., Vervoort, J., 2019. Deciphering the zircon Hf isotope systematics of Eoarchean gneisses from Greenland: Implications for ancient crust–mantle differentiation and Pb isotope controversies. Geochimica et Cosmochimica Acta 250, 7697.Google Scholar
Kemp, A., Wilde, S., Hawkesworth, C., Coath, C., Nemchin, A., Pidgeon, T., Vervoort, J., DuFrane, S., 2010. Hadean crustal evolution revisited: New constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters 296, 4556.Google Scholar
Kendall, B., Creaser, R.A., Selby, D., 2006. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of ‘Sturtian’ glaciation. Geology 34, 729732.Google Scholar
Kenney, B.C., 1982. Beware spurious self-correlations! Water Resources Research 18, 10411048.Google Scholar
Kermack, K.A., Haldane, J.B.S., 1950. Organic correlation in allometry. Biometrika 37, 3041.Google Scholar
Kesler, S.E., Vennemann, T.W., Frederickson, C., Breithaupt, A., Vazquez, R, Furman, F.C., 1997. Hydrogen and oxygen isotope evidence for origin of MVT-forming brines, southern Appalachians. Geochimica et Cosmochimica Acta 61, 1513, 1523.Google Scholar
Ketcham, R.A., Donelick, R.A., Carlson, W.D., 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist 84, 12351255.Google Scholar
Klein, M., Stosch, H.-G., Seck, H.A., 1997. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: An experimental study. Chemical Geology 138, 257271.Google Scholar
Klein, M., Stosch, H.-G., Seck, H.A., Shimizu, N., 2000. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochimica et Cosmochimica Acta 64, 99115.Google Scholar
Klimm, K., Blundy, J.D., Green, T.H., 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. Journal of Petrology 49, 523553.Google Scholar
Koehler, K.J., Larnz, K., 1980. An empirical investigation of goodness-of-fit statistics for sparse multinomials. Journal of the American Statistical Association 75, 336344.Google Scholar
Koga, K.T., Kelemen, P.B., Shimizuet, N., 2001. Petrogenesis of the crust–mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochemisty, Geophysics, Geosystems 2: 2000GC000132.Google Scholar
Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences 107, 1969119695.Google Scholar
Konn, C., Charlou, J.L., Holm, N.G., Mousis, O., 2015. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Astrobiology 15, doi: 10.1089/ast.2014.1198.Google Scholar
Korenaga, J., 2018. Crustal evolution and mantle dynamics through Earth history. Philosophical Transactions of the Royal Society A376, 20170408. http://dx.doi.org/10.1098/rsta.2017.0408.Google Scholar
Korotev, R. L., 1996. A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostandards Newsletter 20, 217245.Google Scholar
Košler, J., Fonneland, H., Sylvester, P., Tubrett, M., Pedersen, R.B., 2002. U–Pb dating of detrital zircons for sediment provenance studies: A comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology 182, 605618.Google Scholar
Kovacs, L.O., Kovacs, G.P., Martin-Fernandez, J.A., Barcelo-Vidal, C., et al., 2006. Major-oxide compositional discrimination in Cenozoic volcanites of Hungary. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds.), Compositional data analysis in the geosciences: From theory to practice. Geological Society Special Publication 264. Geological Society, London. 1123.Google Scholar
Kramers, J.D., Tolstikhin, I.N., 1997. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chemical Geology 139(1–4), 75110.Google Scholar
Krissansen-Totton, J., Buick, R., Catling, D.C., 2015. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. American Journal of Science 315, 275316.CrossRefGoogle Scholar
Kroner, A., Williams, I.S., Compston, W., Baur, N., Vitanage, P.W., Perera, L.R.K., 1987. Zircon ion microprobe dating of high-grade rocks in Sri Lanka. Journal of Geology 95, 775791.Google Scholar
Kroonenberg, S.B., 1990. Geochemistry of Quaternary fluvial sands from different tectonic regimes. Geochemistry of the Earth’s Surface and of Mineral Formation, 2nd International Symposium, July 2–8, Aix en Provence, France (extended abstracts), 88–91.Google Scholar
Kueter, N., Lilley, M.D., Schmidt, M.W., Bernasconi, S.M., 2019. Experimental carbonatite/graphite carbon isotope fractionation and carbonate/graphite thermometry. Geochimica et Cosmochimica Acta 253, 290306.Google Scholar
Kulaksız, S., Bau, M., 2013. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters 362, 4350.Google Scholar
Kuno, H., 1966. Lateral variation of basalt magma types across continental margins and island arcs. Bulletin of Volcanology 29, 195222.Google Scholar
Kuno, H., 1968. Differentiation of basalt magmas. In: Hess, H.H., Poldervaart, A. (eds.), Basalts: The Poldervaart treatise on rocks of basaltic composition. Interscience, New York. 2: 623688.Google Scholar
Kuritani, T., Kitgawa, H., Nakamura, E., 2005. Assimilation and fractional crystallisation controlled by transport process of crustal melt: Implications from an alkali basalt–dacite suite from Rishiri volcano, Japan. Journal of Petrology 46, 14211442.Google Scholar
Kurz, M.D., Jenkins, W.J., 1981. The distribution of helium in oceanic basalt glasses. Earth and Planetary Science Letters 53, 4154.Google Scholar
Kyser, T.K., Kerrich, R., 1991. Retrograde exchange of hydrogen isotopes between hydrous minerals and water at low temperatures. In: Taylor, H.P., O’Neill, J.R., Kaplan, I.R. (eds.), Stable isotope geochemistry: A tribute to Samuel Epstein. Geological Society Special Publication 3. Geological Society, London. 409422.Google Scholar
Kyser, T.K., O’Neill, J.R., 1984. Hydrogen isotope systematics of submarine basalts. Geochimica et Cosmochimica Acta 48, 21232133.Google Scholar
Labidi, J., Cartigny, P., 2016. Negligible sulfur isotope fractionation during partial melting: Evidence from Garrett transform fault basalts, implications for the late-veneer and the Hadean matte. Earth and Planetary Science Letters 451, 196207.Google Scholar
Lacan, F., Tachikawa, K., Jeandel, C., 2012. Neodymium isotopic composition of the oceans: A compilation of seawater data. Chemical Geology 300, 177184.Google Scholar
Lacroix, B., Vennemann, T., 2015. Empirical calibration of the oxygen isotope fractionation between quartz and Fe–Mg–chlorite. Geochimica et Cosmochimica Acta 149, 2131.Google Scholar
Lambrecht, G., Diamond, L.W., 2014. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry. Geochimica et Cosmochimica Acta 141, 381406.Google Scholar
Langmuir, C.H., 1989. Geochemical consequences of in situ crystallisation. Nature 340, 199205.CrossRefGoogle Scholar
Langmuir, C.H., Vocke, R.D., Hanson, G.N., Hart, S.R., 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters 37, 380392.Google Scholar
Lassiter, J.C., Blichert-Toft, J., Hauri, E.H., Barsczus, H.G., 2003. Isotope and trace element variations in lavas from Raivavae and Rapa, Cook–Austral Islands: Constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chemical Geology 202, 115138.Google Scholar
Laubier, M., Grove, T.L., Langmuir, C.H., 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters 392, 265278.Google Scholar
Leake, B.E., Hendry, G.L., Kemp, A., Plant, A.G., Harvey, P.K., Wilson, J.R., Coats, J.S., Aucott, J.W., Lunel, T., Howarth, R.J., 1969. The chemical analysis of rock powders by automated X-ray fluorescence. Chemical Geology 5, 786.Google Scholar
Le Bas, M.J., 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology 41, 14671470.Google Scholar
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology 27, 745750.Google Scholar
Le Maitre, R.W., 1968. Chemical variation within and between volcanic rock series: A statistical approach. Journal of Petrology 9, 220252.Google Scholar
Le Maitre, R.W., 1976. The chemical variability of some common igneous rocks. Journal of Petrology 17, 589637.Google Scholar
Le Maitre, R.W., 1982. Numerical petrology: Statistical interpretation of geochemical data. Elsevier, Amsterdam.Google Scholar
Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R., Zanettin, B., 1989. A classification of igneous rocks and glossary of terms. Blackwell, Oxford.Google Scholar
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., Bateman, P. (eds.), 2002. Igneous rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511535581.Google Scholar
Lechler, P.J., Desilets, M.O., 1987. A review of the use of loss on ignition as a measurement of total volatiles in whole rock analysis. Chemical Geology 63, 341344.Google Scholar
Lécuyer, C., Gillet, P., Robert, F., 1998. The hydrogen isotope composition of seawater and the global water cycle. Chemical Geology 145, 249261.CrossRefGoogle Scholar
Ledevin, M., 2019. Archaean cherts: Formation, processes and palaeoenvironments. In: Van Kranendonk, M., Bennett, V.C., Hoffmann, J.E. (eds.), Earth’s oldest rocks, 2nd ed. Elsevier. 913944.Google Scholar
Lee, C.-T., 2016. Geochemical classification of elements. In: White, W.M. (ed.), Encyclopedia of geochemistry. Springer, Cham. 15.Google Scholar
Levasseur, S., Birck, J.L., Allegre, C.J., 1999. The osmium riverine flux and the oceanic mass balance of osmium. Earth and Planetary Science Letters 174, 723.Google Scholar
Lewis, J.B., Floss, C., Gyngard, F., 2018. Origin of nanodiamonds from Allende constrained by statistical analysis of C isotopes from small clusters of acid residue by NanoSIMS. Geochimica et Cosmochimica Acta 221, 237254.Google Scholar
Li, C., Arndt, N.T., Tang, Q., Ripley, E.M., 2015. Trace element indiscrimination diagrams. Lithos 232, 7683.Google Scholar
Li, J., Huang, X.-L., Wei, G.-J., Liu, Y., Ma, J.-L., Han, L., He, P.-L., 2018. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites. Geochimica et Cosmochimica Acta 240, 6479.Google Scholar
Li, J.-L., Schwarzenbach, E.M., John, T., Ague, J.J., Huang, F., Gao, J., Klemd, R., Whitehouse, M.J., Wang, X.-S., 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, doi: 10.1038/s41467-019-14110-4.Google Scholar
Li, K., Li, L., Pearson, D.G., Stachel, T., 2019. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth and Planetary Science Letters 516, 190201.Google Scholar
Liegeois, J.P., Navez, J., Hertogen, J., Black, R., 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45, 128.Google Scholar
Liu, B., Liang, Y., 2017. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: Reading melting parameters from REE abundances in abyssal peridotites. Geochimica et Cosmochimica Acta 203, 216234.Google Scholar
Liu, X.M., Rudnick, R.L., 2011. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proceedings of the National Academy of Sciences 108, 2087320880.Google Scholar
Lobach-Zhuchenko, S.B., Rollinson, H.R., Chekulaev, V.P, Savatenkov, V.M., Kovalenko, A.V., Martin, H., Guseva, N.S., Arestova, N.A., 2008. Petrology of a late Archaean, highly-potassic, sanukitoid pluton from the Baltic Shield: Insights into late Archaean mantle metasomatism. Journal of Petrology 49, 393420.Google Scholar
Lodders, K., Palme, H., Gail, H.P., 2009. 4.4 Abundances of the elements in the solar system. In: Solar system. Springer-Verlag, Berlin. 712770.Google Scholar
Long, J.V.P., 1994. Microanalysis from the 1950 to the 1990s. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds.), Microprobe techniques in the Earth sciences. Cambridge University Press, Cambridge. 148.Google Scholar
Lotout, C., Poujol, M., Pitra, P., Anczkiewicz, R., Van Den Driessche, J., 2020. From burial to exhumation: Emplacement and metamorphism of mafic eclogitic terranes constrained through multimethod petrochronology: A case study from the Lévézou massif (French Massif Central, Variscan belt). Journal of Petrology, doi: 10.1093/petrology/egaa046.Google Scholar
Ludbrook, J., 1997. Comparing methods of measurement. Clinical and Experimental Pharmacology and Physiology 24, 193203.Google Scholar
Luders, V., Pracejus, B., Halbach, P., 2001. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chemical Geology 173, 4558.Google Scholar
Ludwig, K.R., 2009. Using Isoplot/Ex, Version 4.1: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4.Google Scholar
Luft, , 2014. Volatiles in Earth’s mantle. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 3: 355391.Google Scholar
Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349357.Google Scholar
Lugmair, G.W., Scheinin, N.B., Marti, K., 1975. Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth and Planetary Science Letters 27, 7984.Google Scholar
Luhr, J.F., Carmichael, I.S.E., 1980. The Colima Volcanic Complex, Mexico. Contributions to Mineralogy and Petrology 71, 343372.Google Scholar
Lundstrom, C., 2009. Hypothesis for the origin of convergent margin granitoids and Earth’s continental crust by thermal migration zone refining. Geochimica et Cosmochimica Acta 73, 57095729.Google Scholar
Luth, W.C., Jahns, R.H., Tuttle, O.F., 1964. The granite system at pressures of 4–10 kbar. Journal of Geophysical Research 69, 759773.Google Scholar
Maaloe, S., Abbott, R.N., 2005. Tetrahedral plots of the phase relations for basalts. Mathematical Geology 37, 869893.Google Scholar
Maas, R., Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Sobolev, N.V., 2005. Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology 33, 549552.Google Scholar
MacDonald, G.A., 1968. Composition and origin of Hawaiian lavas. In: Coats, R.R., Hay, R.L., Anderson, C.A. (eds.), Studies in volcanology: A memoir in honour of Howel Williams. Geological Society of America Memoir 116, 477–522.Google Scholar
MacDonald, G.A., Katsura, T., 1964. Chemical composition of Hawaiian lavas. Journal of Petrology 5, 83133.Google Scholar
Macpherson, C.G., Gamble, J.A., Mattey, D.P., 1998. Oxygen isotope geochemistry of lavas from an oceanic to continental arc transition, Kermadec–Hikurangi margin, SW Pacific. Earth and Planetary Science Letters 160, 609621.Google Scholar
Magaritz, M., Whitford, D.J., James, D.E., 1978. Oxygen isotopes and the origin of high 87Sr/86Sr andesites. Earth and Planetary Science Letters 40, 220230.Google Scholar
Magna, T., Hu, Y., Teng, F.-Z., Mezger, K., 2017. Magnesium isotope systematics in Martian meteorites. Earth and Planetary Science Letters 474, 419426.Google Scholar
Mallmann, G., O’Neill, H.St-C., 2007. The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochimica et Cosmochimica Acta 71, 28372857.Google Scholar
Mallmann, G., O’Neill, H.St-C., 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology 50, 17651794.Google Scholar
Mallmann, G., O’Neill, H.St-C., 2013. Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. Journal of Petrology 54, 933949.Google Scholar
Mallmann, G., O’Neill, H.St-C., 2014. Corrections to ‘Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt’. Journal of Petrology 55, 1241.Google Scholar
Mangold, N., Baratoux, D., Arnalds, O., et al., 2011. Segregation of olivine grains in volcanic sands in Iceland and implications or Mars. Earth and Planetary Science Letters 310, 233243.Google Scholar
Manning, D.A.C., 1981. The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb. Contributions to Mineralogy and Petrology 76, 206215.Google Scholar
Marin-Carbonne, J., Busigny, V., et al., 2020. In situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction. Geobiology 18, 306325.Google Scholar
Marschall, H.R., Tang, M., 2020. High-temperature processes: Is it time for lithium isotopes? Elements 16, 247252.Google Scholar
Marshall, B.D., DePaolo, D.J., 1982. Precise age determinations and petrogenetic studies using the K–Ca method. Geochimica et Cosmochimica Acta 46, 25372545.Google Scholar
Marty, B., 2011. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters 313–314, 5666.Google Scholar
Marty, B., Zimmermann, L., 1999. Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: Assessment of shallow-level fractionation and characterization of source composition. Geochimica et Cosmochimica Acta 63, 36193633.Google Scholar
Marumo, K., Nagasawa, K., Kuroda, Y., 1980. Mineralogy and hydrogen isotope chemistry of clay minerals in the Ohunuma geothermal area, NE Japan. Earth and Planetary Science Letters 47, 255262.Google Scholar
Masuda, A., 1962. Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals. Journal of Earth Sciences (Nagoya University) 10, 173187.Google Scholar
Matsuhisa, Y., Goldsmith, J.R., Clayton, R.N., 1979. Oxygen isotope fractionation in the systems quartz–albite–anorthite–water. Geochimica et Cosmochimica Acta 43, 11311140.Google Scholar
Matthews, A., Katz, A., 1977. Oxygen isotope fractionation during the dolomitisation of calcium carbonate. Geochimica et Cosmochimica Acta 41, 14311438.Google Scholar
McConnaughey, T., 1989, 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta 53, 151162.Google Scholar
McCoy-West, A.J., Fitton, J.G., Pons, M.-L., Inglis, E. C., Williams, H.M., 2018. The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites. Geochimica et Cosmochimica Acta 238, 542562.Google Scholar
McCulloch, M.T., Bennett, V., 1994. Progressive growth of the Earth’s continental crust and depleted mantle: Geochemical constraints. Geochimica et Cosmochimica Acta 58, 47174738.Google Scholar
McCulloch, M.T., Black, L.P., 1984. Sm–Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism. Earth and Planetary Science Letters 71, 4658.Google Scholar
McCulloch, M.T., Chappell, B.W., 1982. Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters 58, 5164.Google Scholar
McCulloch, M.T., Jaques, A.L., Nelson, D.R., Lewis, J.D., 1983. Nd and Sr isotopes in kimberlites and lamproites from western Australia: An enriched mantle origin. Nature 302, 400403.Google Scholar
McDermott, F., Hawkesworth, C.J., 1991. Th, Pb and Sr isotopic variations in young island arc volcanics and oceanic sediments. Earth and Planetary Science Letters 104, 115.Google Scholar
McDonald, M. J., Piercey, S.J., Lyne, J.D., Pigage, L.C., Piercey, G., 2018. Mineral assemblages, textures and in situ sulphur isotope geochemistry of sulphide mineralization from the Cyprus-type ice volcanogenic massive sulphide (VMS) deposit, Yukon, Canada. Minerals 8, 501. doi: 10.3390/min8110501.Google Scholar
McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters 101, 118.Google Scholar
McDonough, W.F., 2014a. Compositional model for the Earth’s core. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 3: 559577.Google Scholar
McDonough, W.F. (ed.), 2014b. Treatise on geochemistry, 2nd ed., vol. 15. Elsevier, Oxford.Google Scholar
McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology 120, 223253.Google Scholar
McIntire, W.L., 1963, Trace element partition coefficients: A review of theory and applications to geology. Geochimica et Cosmochimica Acta 27, 12091264.Google Scholar
McKenzie, D., 1985. The extraction of magma from the crust and mantle. Earth and Planetary Science Letters 74, 8191.Google Scholar
McKenzie, D., O’Nions, R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 10211092.Google Scholar
McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A. (eds.), Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Washington, DC. 169200.Google Scholar
McLennan, S.M., 2018. Lanthanide rare earths. In: White, W.M. (ed.), Encylopedia of geochemistry. Springer, Cham. 792799.Google Scholar
McLennan, S., Taylor, S., 1982. Geochemical constraints on the growth of continental crust. Journal of Geology 9, 342354.Google Scholar
McLennan, S.M., Taylor, S.R., 1991. Sedimentary rocks and crustal evolution revisited: Tectonic setting and secular trends. Journal of Geology 99, 121.Google Scholar
McLennan, S. M., Taylor, S.R., 2012. Geology, geochemistry and natural abundances of the rare earth elements. In: Atwood, D.A. (ed.), The rare earth elements: Fundamentals and applications. Wiley, Chichester. 119.Google Scholar
Meibom, A., Sleep, N.H., Chamberlain, C.P., Coleman, R.G., Frei, R., Hren, M.T., Wooden, J.L., 2002. Re–Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth’s upper mantle. Nature 419, 705708.Google Scholar
Meinicke, N., Ho, S.L., Hannisdal, B., Nurnberg, D., Tripati, A., Schiebel, R., Mecklerl, A.N., 2020. A robust calibration of the clumped isotopes to temperature relationship for foraminifers. Geochimica et Cosmochimica Acta 270, 160183.Google Scholar
Meisch, A.T., 1969. The constant sum problem in geochemistry. In: Merriam, D.F. (ed.), Computer applications in the earth sciences. Springer, Boston. 161176.Google Scholar
Merrill, R.B., Robertson, J.K., Wyllie, P.J., 1970. Melting reactions in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O to 20 kilobars compared with results for other feldspar–quartz–H2O and rock–H2O systems. Journal of Geology 78, 558569.Google Scholar
Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chemical Geology 56, 207218.Google Scholar
Mettam, C., Zerkle, A.L., Claire, M.W., Pravea, A.R., Poulton, S.W., Junium, C.K., 2019. Anaerobic nitrogen cycling on a Neoarchaean ocean margin. Earth and Planetary Science Letters 527, 115800.Google Scholar
Michard, A., Gurriet, P., Soudant, M., Albarede, F., 1985. Nd isotopes in French phanerozoic shales: External vs internal aspects of crustal evolution. Geochimica et Cosmochimica Acta 49, 601610.Google Scholar
Middlemost, E.A.K., 1985. Magmas and magmatic rocks. Longman, London.Google Scholar
Middlemost, E.A.K., 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology 77, 1926.Google Scholar
Mikhail, S., Furi, E., 2019. On the origins(s) and evolution of the Earth’s carbon. Elements 15, 307312.Google Scholar
Miller, R.G., O’Nions, R.K., 1985. Source of Precambrian chemical and clastic sediments. Nature 314, 325330.Google Scholar
Millero, F.J., 2014. Physico-chemical controls on seawater. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 8: 118.Google Scholar
Milliken, K.L., 2014. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks. Journal of Sedimentary Research 84, 11851199.Google Scholar
Minster, J.F., Allegre, C.J., 1978. Systematic use of trace elements in igneous processes. Part III: Inverse problem of batch partial melting in volcanic suites. Contributions to Mineralogy and Petrology 68, 3752.Google Scholar
Minster, J.F., Minster, J.B., Treuil, M., Allegre, C.J., 1977. Systematic use of trace elements in igneous processes. Part II. Inverse problem of the fractional crystallisation process in volcanic suites. Contributions to Mineralogy and Petrology 61, 4977.Google Scholar
Mishima, K., Yamazaki, R., Satish-Kumar, M., Ueno, Y., Hokada, T., Toyoshima, T., 2017. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India: Late Archean record of changing atmospheric chemistry. Earth and Planetary Science Letters 464, 6983.Google Scholar
Misra, S., Froelich, P.N., 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science 335, 818823.Google Scholar
Mix, H.T., Chamberlain, C.P., 2014. Stable isotope records of hydrologic change and paleotemperature from smectite in Cenozoic western North America. Geochimica et Cosmochimica Acta 141, 532546.Google Scholar
Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science 274, 321355.Google Scholar
Miyoshi, T., Sakai, H., Chiba, H., 1984. Experimental study of sulphur isotope fractionation factors between sulphate and sulphide in high temperature melts. Geochemical Journal 18, 7584.Google Scholar
Mongelli, G., Critelli, S., Perri, F., Sonnino, M, Perrone, V., 2006. Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental red-bed mudrocks, Peloritani mountains, southern Italy. Geochemical Journal 40, 197209.Google Scholar
Montgomery, D., Peck, E., Vining, G., 2012. Introduction to linear regression analysis, 5th ed. Wiley & Sons, Hoboken, NJ.Google Scholar
Moss, R.L., Tzimas, E., Kara, H., Willis, P., Kooroshy, J., 2011. Critical metals in strategic energy technologies. JRC scientific and technical reports. European Commission.Google Scholar
Moyen, J., Champion, D., Smithies, R., 2009. The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 100, 3550.Google Scholar
Muehlenbachs, K., Clayton, R.N., 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. Journal of Geophysical Research 81, 43654369.Google Scholar
Muenow, D.W., Garcia, M.O., Aggrey, K.E., Bednarz, U., Schmincke, H.U., 1990. Volatiles in submarine glasses as a discriminant of tectonic origin: Application to the Troodos ophiolite. Nature 343, 159161.Google Scholar
Mukherjee, I., Large, R.R., Bull, S., Gregory, D.G., Stepanov, A.S., Avila, J., Ireland, T.R., Corkrey, R., 2019. Pyrite trace-element and sulfur isotope geochemistry of Paleo-Mesoproterozoic McArthur Basin: Proxy for oxidative weathering. American Mineralogist 104, 12561272.Google Scholar
Mullen, E.D., 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62, 5362.Google Scholar
Mullen, E.K., Weiss, D., 2013. Sr–Nd–Hf–Pb isotope and trace element evidence for the origin of alkalic basalts in the Garibaldi Belt, northern Cascade arc. Geochemistry, Geophysics, Geosystems 14, 31263155.CrossRefGoogle Scholar
Murphy, M.J., Porcelli, D., Pogge von Strandmann, P.A.E., Hirst, C.A., Kutscher, L., Katchinoff, J.A., Morth, C.M., Maximov, T., Andersson, P.S., 2019. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes. Geochimica et Cosmochimica Acta 245, 154171.Google Scholar
Murthy, S.V.S., Ghosh, S., Ray, D., 2019. Noble gases and nitrogen in Raghunathpura (IIAB) and Nyaung (IIIAB) iron meteorites. Meteoritics and Planetary Science 54, 90103.Google Scholar
Mysen, B.O, 1988. Developments in geochemistry, vol. 4: Structures and properties of silicate melts. Elsevier, Amsterdam.Google Scholar
Nabelek, P.I., Labotka, T.C., O’Neill, J.R., Papike, J.J., 1984. Contrasting fluid/rock interaction between Notch Peak granite intrusion and argillites and limestones in western Utah: Evidence from stable isotopes and phase assemblages. Contributions to Mineralogy and Petrology 86, 2534.Google Scholar
Nagasawa, H., 1966. Trace element partition coefficient in ionic crystals. Science 152, 767769.Google Scholar
Nägler, T.F., Kramers, J.D., 1998. Nd isotopic evolution of the upper mantle during the Precambrian: Models, data and the uncertainty of both. Precambrian Research 91(3–4), 233252.Google Scholar
Nakayama, K., Nakamura, T., 2014. X-ray fluorescence spectroscopy for geochemistry. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 181194.Google Scholar
Nash, W.P., Crecraft, H.R., 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta 49, 23092322.Google Scholar
Neal, C.R., Davidson, J.P. 1989. An unmetasomatized source for the Malaitan alniiite (Solomon Islands): Petrogenesis involving zone refining, megacryst fractionation, and assimilation of oceanic lithosphere. Geochimica et Cosmochimica Acta 53, 19751990.Google Scholar
Nebel, O., Scherer, E.E., Mezger, K., 2011. Evaluation of the 87Rb decay constant by age comparison against the U–Pb system. Earth and Planetary Science Letters 301, 18.Google Scholar
Neilson, R.L., Ustunisik, G., Weinsteiger, A.B., Tepley, F.J., III, Johnston, A.D., Kent, A.J.R., 2017. Trace element partitioning between plagioclase and melt: An investigation of the impact of experimental and analytical procedures. Geochemistry, Geophysics, Geosystems 18, doi: 10.1002/2017GC007080.Google Scholar
Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206210.Google Scholar
Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715717.Google Scholar
Nesbitt, H.W., Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based upon thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48, 15231534.Google Scholar
Nesbitt, H.W., Young, G.M., 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97, 129147.Google Scholar
Nesbitt, H.W., Young, G.M., 1996. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 43, 341358.Google Scholar
Nesbitt, H.W., MacRae, N.D., Kronberg, B.I., 1990. Amazon deep-sea fan muds: Light REE enriched products of extreme chemical weathering. Earth and Planetary Science Letters 100, 118123.Google Scholar
Neukampf, J., Ellis, B.S., Magna, T., Laurent, O., Bachmann, O., 2019. Partitioning and isotopic fractionation of lithium in mineral phases of hot, dry rhyolites: The case of the Mesa Falls tuff, Yellowstone. Chemical Geology 506, 175186.Google Scholar
Nicholls, J., 1988. The statistics of Pearce element diagrams and the Chayes closure problem. Contributions to Mineralogy and Petrology 99, 1124.Google Scholar
Nicholls, J., Russell, J.K., 2016. Igneous rock associations 20. Pearce element ratio diagrams: Linking geochemical data to magmatic processes. Geoscience Canada 43, 133146.Google Scholar
Nicolescu, S., Reiners, P., 2005. (U–Th)/He dating of epidote and andradite garnet. Geochimica et Cosmochimica Acta 69, A26.Google Scholar
Nielsen, R.L., Drake, M.J., 1979. Pyroxene–melt equilibria. Geochimica et Cosmochimica Acta 43, 12591272.Google Scholar
Nielsen, R.L., Dungan, M.A., 1983. Low pressure mineral–melt equilibria in natural anhydrous mafic systems. Contributions to Mineralogy and Petrology 84(4), 310326.Google Scholar
Nisbet, E.G., Deitrich, V. J., Esenwein, A., 1979. Routine trace element determination in silicate minerals and rocks by X-ray fluorescence. Forschritte der Mineralogie 57, 264279.Google Scholar
Nishimura, K., 2012. A mathematical model of trace element and isotopic behavior during simultaneous assimilation and imperfect fractional crystallization. Contributions to Mineralogy and Petrology 164, 427440.Google Scholar
Nishimura, K., 2013. AIFCCalc: An Excel spreadsheet for modelling simultaneous assimilation and imperfect fractional crystallization. Computers and Geosciences 51, 410414.Google Scholar
Nishimura, K., 2019. Chemical mass balance equations for open-system magma chamber processes that result in crystal zoning. Journal of Volcanology and Geothermal Research 374, 181196.Google Scholar
Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology 45, 24232458.Google Scholar
Niu, Y., Batiza, R., 1997. Trace element evidence from seamounts for recycled oceanic crust in the eastern Pacific mantle. Earth and Planetary Science Letters 148, 471483.Google Scholar
Norman, M.D., De Deckker, P., 1990. Trace metals in lacustrine and marine sediments: A case study from the Gulf of Carpentaria, northern Australia. Chemical Geology 82, 299318.Google Scholar
Norman, M.D., Leeman, W.P., 1990. Open-system magmatic evolution of andesites and basalts from the Salmon Creek volcanics, southwest Idaho, U.S.A. Chemical Geology 81, 167189.Google Scholar
Norman, M.D., Leeman, W.P., Blanchard, D.P., Fitton, J.G., James, D., 1989. Comparison of major and trace element analyses by ICP, XRF, INAA and ID methods. Geostandards Newsletter, 13283–13290.Google Scholar
Norrish, K., Chappell, B.W., 1977. X-ray fluorescence spectrometry. In: Zussman, J. (ed.), Physical methods in determinative mineralogy, 2nd ed. Academic Press, New York. 201272.Google Scholar
O’Connor, J.T., 1965. A classification for quartz-rich igneous rock based on feldspar ratios. U.S.G.S. Professional Paper 525B, B79–B84.Google Scholar
O’Hara, M.J., 1968. The bearing of phase equilibria studies on the origin and evolution of basic and ultrabasic rocks. Earth Science Reviews 4, 69133.Google Scholar
O’Hara, M.J., 1977. Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature 266, 503507.Google Scholar
O’Hara, M.J., Matthews, R.E., 1981. Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. Journal of the Geological Society 138, 237277.Google Scholar
Ohmoto, H., Lasaga, A.C., 1982. Kinetics of reactions between aqueous sulphates and sulphides in hydrothermal systems. Geochimica et Cosmochimica Acta 46, 17271745.Google Scholar
Ohmoto, H., Rye, R.O., 1974. Hydrogen and oxygen isotopic compositions of fluid inclusions in the Kuroko deposits, Japan. Economic Geology 69, 947953.Google Scholar
Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.), Geochemistry of hydrothermal ore deposits. Wiley, New York. 509567.Google Scholar
Olesik, J.W., 2014. Inductively coupled plasma mass spectrometers. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 309336.Google Scholar
O’Neill, H.St-C., 2016. The smoothness and shapes of chondrite-normalized rare earth element patterns in basalts. Journal of Petrology 57, 14631508.Google Scholar
O’Neill, J.R., Taylor, H.P., 1967. The oxygen isotope and cation exchange chemistry of feldspars. American Mineralogist 52, 14141437.Google Scholar
O’Neill, J.R., Clayton, R.N., Mayeda, T.K., 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Physical Chemistry 51, 55475558.Google Scholar
O’Neill, J.R., Shaw, S.E., Flood, R.H., 1997. Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England Batholith, Australia. Contributions to Mineralogy and Petrology 62, 313328.Google Scholar
O’Nions, R.K., McKenzie, D.P., 1988. Melting and continent generation. Earth Planetary Science Letters 90, 449456.Google Scholar
O’Nions, R.K., Carter, S.R., Evensen, N.M., Hamilton, P.J., 1979. Geochemical and cosmochemical applications of Nd isotope analysis. Annual Review of Earth and Planetary Sciences 7, 1138.Google Scholar
O’Nions, R.K., Hamilton, P.J., Evensen, N.M., 1977. Variations in 143Nd/144Nd and 87Sr/86Sr in oceanic basalts. Earth and Planetary Science Letters 34, 1322.Google Scholar
O’Nions, R.K., Hamilton, P.J., Hooker, P.J., 1983. A Nd isotope investigation of sediments related to crustal development in the British Isles. Earth and Planetary Science Letters 63, 229240.Google Scholar
Ono, S., 2017. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth’s atmosphere. Annual Review of Earth and Planetary Sciences 45, 301329.Google Scholar
Ono, S., Wing, B., Rumble, D., Farquhar, J., 2006. High precision analysis of all four stable isotopes of sulfur (32S, 33S, 34S and 36S) at nanomole levels using a laser fluorination isotope-ratio-monitoring gas chromatography–mass spectrometry. Chemical Geology 225, 3039.Google Scholar
Onuma, N., Higuchi, H., Wakita, H., Nagasawa, H., 1968. Trace element partitioning between two pyroxenes and the host lava. Earth and Planetary Science Letters 5, 4751.Google Scholar
Oonk, P.B.H., Mason, P.R.D., Tsikos, H., Bau, M., 2018. Fraction-specific rare earth elements enable the reconstruction of primary seawater signatures from iron formations. Geochimica et Cosmochimica Acta 238, 102122.Google Scholar
Owen-Smith, T.M., Ashwal, L.D., Sudo, M., Trumbull, R.B., 2017. Age and petrogenesis of the Doros Complex, Namibia, and implications for early plume-derived melts in the Paraná–Etendeka LIP. Journal of Petrology 58, 423442.Google Scholar
Palin, R.M., White, R.W., Green, E.C.R., 2016. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling. Precambrian Research 287, 7390.Google Scholar
Palme, H., Nickel, K.G., 1985. Ca/Al ratio and composition of the Earth’s upper mantle. Geochimica et Cosmochimica Acta 49, 21232132.Google Scholar
Palme, H., O’Neill, H., 2014. Cosmochemical estimates of mantle composition. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 3: 139.Google Scholar
Parkinson, I.J., Hawkesworth, C.J., Cohen, A.S., 1998. Ancient mantle in a modern arc: Osmium isotopes in Izu–Bonin–Mariana forearc peridotites. Science 281, 20112013.Google Scholar
Patchett, P., Arndt, N., 1986. Nd isotopes and tectonics of 1.9–1.7 Ga crustal genesis. Earth and Planetary Science Letters 78, 329338.Google Scholar
Patchett, P.J., Tatsumoto, M., 1980. Lu–Hf total-rock isochron for eucrite meteorites. Nature 288, 571574.Google Scholar
Patino Douce, A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro, A., Fernandez, C., Vigneresse, J.L. (eds.), Understanding granites: Integrating new and classical techniques. Geological Society Special Publication 168. Geological Society, London. 5575.Google Scholar
Patino Douce, A.E., 2005. Vapor-absent melting of tonalite at 15–32 kbar. Journal of Petrology 46, 275290.Google Scholar
Patino Douce, A.E., Beard, J.S., 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 36, 707738.Google Scholar
Patino Douce, A.E., Harris, N., 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology 39, 689710.Google Scholar
Paulukat, C., Gilleaudeau, G.J., Chernyavskiy, P., Frei, R., 2016. The Cr-isotope signature of surface seawater: A global perspective. Chemical Geology 444, 101109.Google Scholar
Pawlowsky-Glahn, V., Egozcue, J. J., 2006. Compositional data and their analysis: An introduction. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds.), Compositional data analysis in the Geosciences: From theory to practice. Geological Society Special Publication 264. Geological Society, London. 110.Google Scholar
Pawlowsky-Glahn, V., Egozcue, J.J., 2016. Spatial analysis of compositional data: A historical review. Journal of Geochemical Exploration 164, 2832.Google Scholar
Pawlowsky-Glahn, V., Olea, R.A., 2004. Geostatistical analysis of compositional data, vol. 7. Oxford University Press, New York.Google Scholar
Peacock, M A., 1934. Classification of igneous rock series. Journal of Geology 39, 689710.Google Scholar
Pearce, J.A., 1976. Statistical analysis of major element patterns in basalts. Journal of Petrology 17, 1543.Google Scholar
Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (ed.), Andesites, orogenic andesites and related rocks. Wiley, Chichester. 525548.Google Scholar
Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, M.J. (eds.), Continental basalts and mantle xenoliths. Shiva, Nantwich. 230249.Google Scholar
Pearce, J.A., 1987. An expert system for the tectonic characterisation of ancient volcanic rocks. Journal of Volcanology and Geothermal Research 32, 5165.Google Scholar
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archaean ocean floor. Lithos 100, 1448.Google Scholar
Pearce, J.A., Cann, J.R., 1971. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth and Planetary Science Letters 12, 339349.Google Scholar
Pearce, J.A., Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.Google Scholar
Pearce, J.A., Gale, G.H., 1977. Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. In: Volcanic processes in ore genesis. Geological Society Special Publication 7. Geological Society, London. 14–24.Google Scholar
Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.Google Scholar
Pearce, J.A., Harris, N.B., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956983.Google Scholar
Pearce, J.A., Kempton, P.D., Nowell, G.M., Noble, S.R., 1999. Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. Journal of Petrology 40, 15791611.Google Scholar
Pearce, T.H., 1968. A contribution to the theory of variation diagrams. Contributions to Mineralogy and Petrology 19, 142157.Google Scholar
Pearce, T.H., 1970. Chemical variations in the Palisades Sill. Journal of Petrology 11, 1532.Google Scholar
Pearce, T.H., Stanley, C.R., 1991. The validity of Pearce element ratio analysis in petrology: An example from the Uwekahuna laccolith, Hawaii. Contributions to Mineralogy and Petrology 108, 212218.Google Scholar
Pearson, D.G., 1999. Evolution of cratonic lithospheric mantle: An isotopic perspective. In: Fei, Y., Bertka, C.M., Mysen, B.O. (eds.), Mantle petrology: Field observations and high-pressure experimentation. Geochemical Society Special Publication 6. Geochemical Society, Houston, TX. 5778.Google Scholar
Pearson, D.G., Wittig, N., 2014. The formation and evolution of the cratonic mantle lithosphere: Evidence from mantle xenoliths. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 3: 255292.Google Scholar
Pearson, D.G., Canil, D., Shirey, S.B., 2014. Mantle samples included in volcanic rocks: Xenoliths and diamonds. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 3: 169253.Google Scholar
Pearson, K., 1896. On a form of spurious self-correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London 60, 489502.Google Scholar
Pease, V., Kuzmeichev, A., Danukalova, M., 2015. The New Siberian Island and evidence for the continuation of the Uralides, Arctic Russia. Journal of the Geological Society 172, 14.Google Scholar
Peccerillo, R., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58, 6381.Google Scholar
Penniston-Dorland, S., Liu, X.M., Rudnick, R.L., 2017. Lithium isotope geochemistry. Reviews in Mineralogy and Geochemistry 82, 165217.Google Scholar
Pernet, C.R., Wilcox, R., Rousselet, G.A., 2013. Robust correlation analyses: False positive and power validation using a new open source Matlab toolbox. Frontiers in Psychology 3, article 606, doi: 10.3389/fpsyg.2012.00606.Google Scholar
Petrelli, M., Poli, G., Perugini, D., Peccerillo, A., 2005. PetroGraph: A new software to visualize, model, and present geochemical data in igneous petrology. Geochemistry, Geophysics, Geosystems 6, doi: 10.1029/2005GC000932.Google Scholar
Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and sandstones. Springer-Verlag, New York.Google Scholar
Petts, D.C., Stern, R.A., Chacko, T., Stachel, T., Heaman, L.M., 2015. A nitrogen isotope fractionation factor between diamond and its parental fluid derived from detailed SIMS analysis of a gem diamond and theoretical calculations. Chemical Geology 410, 188200.Google Scholar
Peucat, J.J., Vidal, P., Bernard-Griffiths, J., Condie, K.C., 1988. Sr, Nd and Pb isotopic systematics in the Archaean low- to high-grade transition zone of southern India: Syn-accretion vs. post-accretion granulites. Journal of Geology 97, 537550.Google Scholar
Peucker-Ehrenbrink, B., Ravizza, G., 2000. The marine osmium isotope record. Terra Nova 12, 205219.Google Scholar
Philpotts, J.A., Schneztler, C.C., 1970. Phenocryst–matrix partition coefficients for K, Rb, Sr and Ba with applications to anorthosite and basalt genesis. Geochimica et Cosmochimica Acta 34, 307322.Google Scholar
Piccoli, F., Brovarone, A.V., Beyssac, O., Martinez, I., Ague, J.J., Chaduteau, C., 2016. Carbonation by fluid–rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones. Earth and Planetary Science Letters 445, 146159.Google Scholar
Plank, T., 2014. The chemical composition of subducting sediments. In: Holland, H., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 4: 607639.Google Scholar
Plank, T., Kelley, K.A., Zimmer, M.M., Hauri, E.H., Wallace, P.J. 2013. Why do mafic arc magmas contain ~4 wt.% water on average? Earth and Planetary Science Letters 364, 168179.Google Scholar
Pogge von Strandmann, P.A.E., Burton, K.W., James, R.H., van Calsteren, P., Gislason, S.R., Mokadem, F., 2006. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth Planetary Science Letters 251, 134147.Google Scholar
Poitrasson, F., 2006. On the iron isotope homogeneity level of the continental crust. Chemical Geology 235, 195200.Google Scholar
Poitrasson, F., 2017. Silicon isotope geochemistry. Reviews in Mineralogy and Geochemistry 82, 289344.Google Scholar
Pope, E., Bird, D.K., Rosing, M.T., 2012. Isotope composition and volume of Earth’s early ocean. Proceedings of the National Academy of Sciences, www.pnas.org/cgi/doi/10.1073/pnas.1115705109.Google Scholar
Potts, P.J., Webb, P.C., Watson, J.S., 1990. Exploiting energy dispersive X-ray fluorescence spectrometry for the determination of trace elements in geological samples. Analytical Proceedings 27, 6770.Google Scholar
Pourmand, A., Dauphas, N., Ireland, T.J., 2012. A novel extraction chromatography and MC-ICPMS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite abundances and post-Archean Australian shale (PAAS). Chemical Geology 291, 3854.Google Scholar
Powell, R., 1984. Inversion of the assimilation and fractional crystallisation (AFC) equations; characterisation of contaminants from isotope and trace element relationships in volcanic suites. Journal of the Geological Society 141, 447452.Google Scholar
Powell, R., Holland, T.J.B., 1988. An internally consistent dataset with uncertainties and correlations: 3. Application to geobarometry, worked examples and a computer programme. Journal of Metamorphic Geology 6, 173204.Google Scholar
Presnall, D.C., Hoover, J.D., 1984. Composition and depth of origin of primary mid-ocean ridge basalts. Contributions to Mineralogy and Petrology 87, 170178.Google Scholar
Presnall, D.C., Dixon, J.R., O’Donnell, T.H., Dixon, S.A., 1979. Generation of mid-ocean ridge tholeiites. Journal of Petrology 20, 335.Google Scholar
Presnall, D.C., Gudfinnsson, G.H., Walter, M.J., 2002. Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochimica et Cosmochimica Acta 66, 20732090.Google Scholar
Price, W.J., 1972. Analytical atomic absorption spectrometry. Heyden, London.Google Scholar
Prowatke, S., Klemme, S., 2005. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Acta 69, 695709.Google Scholar
Prowatke, S., Klemme, S., 2006. Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochimica et Cosmochimica Acta 70, 49975012.Google Scholar
Puchtel, I.S., Walker, R.J., Touboul, M., Nisbet, E.G., Byerly, G.R., 2014. Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochimica et Cosmochimica Acta 125, 394413.Google Scholar
Qin, L., Wang, X., 2017. Chromium isotope geochemistry. Reviews in Mineralogy and Geochemistry 82, 379414.Google Scholar
Qin, T., Wu, F., Wu, Z., Huang, F. 2016. First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon. Contributions to Mineralogy and Petrology 171, article 91.Google Scholar
Qiu, K.-F., Taylor, R.D., Song, Y.-H., Yua, H.-C., Song, K.-R., Li, N., 2016. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China. Gondwana Research 35, 4058.Google Scholar
Rahimi, E., Maghsoudi, A., Hezarkhani, A., 2016. Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district. Journal of African Earth Sciences 124, 139150.Google Scholar
Rahn, M.K., Brandon, M.T., Batt, G.E., Garver, J.I., 2004. A zero-damage model for fission-track annealing in zircon. American Mineralogist 89, 473484.Google Scholar
Ramsay, M.H., 1997. Sampling and sample preparation. In: Gill, R. (ed.), Modern analytical geochemistry: An introduction to quantitative chemical analysis for earth, environmental and material scientists. Addison Wesley Longman, Harlow. 1228.Google Scholar
Rao, N.C., Creaser, R.A., Lehmann, B., Panwar, B.K., 2013. Re–Os isotope study of Indian kimberlites and lamproites: Implications for mantle source regions and cratonic evolution. Chemical Geology 353, 3647.Google Scholar
Reed, S.J., 1994. Electron microprobe microanalysis. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds.), Microprobe techniques in the Earth sciences. Cambridge University Press, Cambridge. 4990.Google Scholar
Rees, C.E., 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta 37, 11411162.Google Scholar
Reeves, E.P., Fiebig, J., 2020. Abiotic synthesis of methane and organic compounds in Earth’s lithosphere. Elements 16, 2531.Google Scholar
Rehkamper, M., Halliday, A.N., Fitton, J.G., Lee, D.-C., Wieneke, M., Arndt, N.T., 1999. Ir, Ru, Pt, and Pd in basalts and komatiites: New constraints for the geochemical behaviour of the platinum-group elements in the mantle. Geochimica et Cosmochimica Acta 63, 39153934.Google Scholar
Reimann, C., Filzmoser, P, Garrett, R., Dutter, R., 2008. Statistical data analysis explained: Applied environmental statistics with R. Wiley & Sons, Chichester.Google Scholar
Reimink, J.R., Davies, J.H.F.L., Chacko, T., Stern, R.A., Heaman, L.M., Sarkar, C., Schaltegger, U., Creaser, R., Pearson, D.G., 2016. No evidence for Hadean continental crust within Earth’s oldest evolved rock unit. Nature Geoscience 9, 777780.Google Scholar
Reiners, P., 2009. Nonmonotonic thermal histories and contrasting kinetics of multiple thermochonometers. Geochimica et Cosmchimica Acta 73, 36123629.Google Scholar
Reiners, P., Farley, K., 1999. He diffusion and (U–Th)/He thermochronometry of titanite. Geochimica et Cosmochimica Acta 63, 38453859.Google Scholar
Reiners, P., Carlson, R., Renne, P., Cooper, K., Granger, D., McLean, N., Schoene, B., 2018. Geochronology and thermochronology. John Wiley & Sons., Chichester.Google Scholar
Reiners, P., Spell, T., Nicolescu, S., Zanetti, K.A., 2004. Zircon (U–Th)/He thermochronometry: He diffusion and comparison with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta 68, 18571887.Google Scholar
Reinhard, A.A., Jackson, M.G., Koornneef, J.M., Rose-Koga, E.F., Blusztajn, J., Konter, J.G., Koga, K.T., Wallace, P.J., Harvey, J., 2018. Sr and Nd isotopic compositions of individual olivine-hosted melt inclusions from Hawai’i and Samoa: Implications for the origin of isotopic heterogeneity in melt inclusions from OIB lavas. Chemical Geology 495, 3649.Google Scholar
Reis, A., Erhardt, A.M., McGluea, M.M., Waite, L., 2019. Evaluating the effects of diagenesis on the δ13C and δ18O compositions of carbonates in a mud-rich depositional environment: A case study from the Midland Basin, USA. Chemical Geology 524, 196212.Google Scholar
Renne, P.R., Mundil, R., Balco, G., Min, K., Ludwig, K.R., 2010. Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta 74(18), 53495367.Google Scholar
Rezaei, M., Nikbakht, M., Shakeri, A., 2017. Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, south Iran. Environmental Science and Pollution Research 24(18), 1547115487.Google Scholar
Richardson, C.K., Rye, R.O., Wasserman, M.D., 1988. The chemical and thermal evolution of the fluids in the Cave-in-Rock fluorspar district, Illinois: Stable isotope systematics at the Deardorff mine. Economic Geology 83, 765783.Google Scholar
Richter, D.H., Moore, J.G., 1966. Petrology of the Kilauea Iki lava lake, Hawaii. USGS Professional Paper 537-B.Google Scholar
Richter, F., Chaussidon, M., Watson, E.B., Mendybaev, R., Homolova, V., 2017. Lithium isotope fractionation by diffusion in minerals. Part 2: Olivine. Geochimica et Cosmochimica Acta 219, 124142.Google Scholar
Rickard, D., Mussmann, M., Steadman, J.A., 2017. Sedimentary sulfides. Elements 13, 117122.Google Scholar
Rickli, J., Frank, M., Halliday, A.N., 2009. The hafnium–neodymium isotopic composition of Atlantic seawater. Earth and Planetary Science Letters 280, 118127.Google Scholar
Rickli, J., Gutjahr, M., Vance, D., Fischer-Gödde, M., Hillenbrand, C.D., Kuhn, G., 2014. Neodymium and hafnium boundary contributions to seawater along the West Antarctic continental margin. Earth and Planetary Science Letters 394, 99110.Google Scholar
Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22, 247263.Google Scholar
Righter, K., Campbell, A.J., Humayun, M., Hervif, R.L., 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta 68, 867880.Google Scholar
Rink, W.J., Thompson, J.W. (eds.), 2015. Encyclopedia of scientific dating methods. Springer Netherlands, Dordrecht.Google Scholar
Rizo, H., Boyet, M., Blichert-Toft, J., Rosing, M., 2011. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth and Planetary Science Letters 312, 267279.Google Scholar
Rizo, H., Boyet, M., Blichert-Toft, J., Rosing, M.T., 2013. Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland. Earth and Planetary Science Letters 377, 324335.Google Scholar
Rizo, H., Walker, R.J., Carlson, R.W., Touboul, M., Horan, M.F., Puchtel, I.S., Boyet, M., Rosing, M.T., 2016. Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochimica et Cosmochimica Acta 175, 319336.Google Scholar
Robbins, G.A., 1972. Radiogenic argon diffusion in muscovite under hydrothermal conditions. MS thesis, Brown University.Google Scholar
Robert, F., Chaussidon, M., 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969972.Google Scholar
Robinson, F.A., Toro, J., Pease, V., 2019, U-Pb and oxygen isotope characteristics of Timanian- and Caledonian-age detrital zircons from the Brooks Range, Arctic Alaska, USA. Geological Society of America Bulletin, https://doi.org/10.1130/B35036.1.Google Scholar
Rocha-Júnior, E.R., Puchtel, I.S., Marques, L.S., Walker, R.J., Machado, F.B., Nardy, A.J., Babinski, M., Figueiredo, A.M., 2012. Re–Os isotope and highly siderophile element systematics of the Paraná continental flood basalts (Brazil). Earth and Planetary Science Letters 337, 164173.Google Scholar
Rocha-Júnior, E.R., Marques, L.S., Babinski, M., Nardy, A.J., Figueiredo, A.M., Machado, F.B., 2013. Sr–Nd–Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná continental flood basalts (Brazil). Journal of South American Earth Sciences 46, 925.Google Scholar
Rock, N.M.S., 1987. The need for standardization of normalised multi-element diagrams in geochemistry: A comment. Geochemical Journal 21, 7584.Google Scholar
Rock, N.M.S., 1988. Summary statistics in geochemistry: A study of the performance of robust estimates. Mathematical Geology 20, 243275.Google Scholar
Rock, N.M.S., 1989. Reply to Aitchison. Mathematical Geology 21, 791793.Google Scholar
Rollinson, H.R., 1992. Another look at the constant sum problem in geochemistry. Mineralogical Magazine 56, 469475.Google Scholar
Rollinson, H.R., 1999. Petrology and geochemistry of metamorphosed komatiites and basalts from the Sula Mountains greenstone belt, Sierra Leone. Contributions to Mineralogy and Petrology 134, 86101.Google Scholar
Rollinson, H.R., 2007. Early Earth systems: A geochemical approach. Blackwell, Oxford.Google Scholar
Rollinson, H.R., 2009. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112, 603614.Google Scholar
Rollinson, H. R., 2014. Plagiogranites from the mantle section of the Oman ophiolite: Models for early crustal evolution. In: Rollinson, H.R., Searle, M.P., Abbasi, I.A., Al-Lazki, A.I., Al Kindi, M.H. (eds.), Tectonic evolution of the Oman mountains: An introduction. Geological Society Special Publication 392. Geological Society, London. 247261.Google Scholar
Rollinson, H.R., 2015. Slab and sediment melting during subduction initiation: Granitoid dykes from the mantle section of the Oman ophiolite. Contributions to Mineralogy and Petrology 170, doi: 10.1007/s00410-015-1177-9.Google Scholar
Rollinson, H. R., 2017. There were no large volumes of continental crust in the early Earth. Geosphere (GSA), doi: 10.1130/GES01437.1.Google Scholar
Rollinson, H.R., Roberts, C.R., 1986. Ratio correlation and major element mobility in altered basalts and komatiites. Contributions to Mineralogy and Petrology 93, 8997.Google Scholar
Rose, J., Koppers, A.A., 2019. Simplifying age progressions within the Cook–Austral Islands using ARGUS‐VI high‐resolution 40Ar/39Ar incremental heating ages. Geochemistry, Geophysics, Geosystems 20, https://doi.org/10.1029/2019GC008302.Google Scholar
Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology 94, 635650.Google Scholar
Roser, B.P., Cooper, R.A., Nathan, S., Tulloch, A.J., 1996. Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics 39(1), 116.Google Scholar
Rosing, M.T., 1999. 13C-depleted carbon microparticles in > 3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674676.Google Scholar
Rouessac, F., Rouessac, A., 2007. Chemical analysis: Modern instrumentation methods and techniques. Wiley, Chichester.Google Scholar
Rowe, H., Hughes, N., Robinson, K., 2012. The quantification and application of handheld energy-dispersive X-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chemical Geology 324–325, 122131.Google Scholar
Rudnick, R.L., Fountain, D., 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics 33, 267309.Google Scholar
Rudnick, R.L., Gao, S., 2014. Composition of the continental crust. In: Holland, H., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 4: 151.Google Scholar
Rudnick, R.L., Walker, R.J., 2009. Interpreting ages from Re–Os isotopes in peridotites. Lithos 112, 10831095.Google Scholar
Rumble, D., Hoering, T.C., 1986. Carbon isotope geochemistry of graphite vein deposits from New Hampshire, USA. Geochimica et Cosmochimica Acta 50, 12391247.Google Scholar
Rumble, D., Giorgis, D., Ireland, T., Zhang, Z., Xu, H., Yui, T.F., Yang, J., Xu, Z., Liou, J.G., 2002. Low δ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochimica et Cosmochimica Acta 66, 22992306.Google Scholar
Ruscitto, D.M., Wallace, P.J., Cooper, L.B., Plank, T. 2012. Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochemistry, Geophysics, Geosystems 13, http://dx.doi.org/10.1029/2011GC003887.Google Scholar
Russell, J.K., Nicholls, J., 1988. Analysis of petrological hypotheses with Pearce element ratios. Contributions to Mineralogy and Petrology 99, 2535.Google Scholar
Rutherford, E., Soddy, F., 1903. Radioactive change. Philosophical Magazine 6, 576591.Google Scholar
Ryan-Davis, J., Lackey, J.S., Gevedon, M., Barnes, J.D., Lee, C.A., Kitajima, K., Valley, J.W., 2019. Andradite skarn garnet records of exceptionally low δ18 O values within an Early Cretaceous hydrothermal system, Sierra Nevada, CA. Contributions to Mineralogy and Petrology 174(8), 68.Google Scholar
Rye, R.O., 2005. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology 215, 536.Google Scholar
Rye, R.O., Ohmoto, H., 1974. Sulfur and carbon isotopes and ore genesis. A review. Economic Geology 69, 826842.Google Scholar
Rye, R.O., Schuiling, R.D., Rye, D.M., Jansen, J.B.H., 1976. Carbon hydrogen and oxygen isotope studies of the regional metamorphic complex at Naxos, Greece. Geochimica et Cosmochimica Acta 40, 10311049.Google Scholar
Ryerson, F.J., Hess, P.C., 1978. Implications of liquid–liquid distribution coefficients to mineral–liquid partitioning. Geochimica et Cosmochimica Acta 42, 921932.Google Scholar
Saal, A.E., Hauri, E.H., Langmuir, C.H., Perfit, M.R., 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451455.Google Scholar
Saal, A.E., Hauri, E.H., Van Orman, J.A., Rutherford, M.J., 2013. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 13171320.Google Scholar
Saccani, E., 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th–Nb and Ce–Dy–Yb systematics. Geoscience Frontiers 6(4), 481501.Google Scholar
Sachs, L., 1984. Applied statistics: A handbook of techniques, 2nd ed. Springer-Verlag, New York.Google Scholar
Salters, V.J., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5, Q05B07.Google Scholar
Salters, V.J., Mallick, S., Hart, S.R., Langmuir, C.E., Stracke, A., 2011. Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochemistry, Geophysics, Geosystems 12, Q08001.Google Scholar
Sano, Y., Terada, K., Fukuoka, T., 2002. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: Lack of matrix dependency. Chemical Geology 184, 217230.Google Scholar
Satir, M., Taubold, H., 2001. Hydrogen and oxygen isotope evidence for fluid–rock interactions in the Menderes Massif, western Turkey. International Journal of Earth Sciences 89, 812821.Google Scholar
Satish-Kumar, M., So, H., Yoshino, T., Kato, M., Hiroi, Y., 2011. Experimental determination of carbon isotope fractionation between iron carbide melt and carbon: 12C-enriched carbon in the Earth’s core? Earth and Planetary Science Letters 310, 340348.Google Scholar
Sato, J., Hirose, T., 1981. Half-life of 138La. Radiochemical and Radioanalytcal Letters 46, 145152.Google Scholar
Sauzeat, L., Rudnick, R.L., Chauvel, C., Garcon, M., Tang, M., 2015. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth and Planetary Science Letters 428, 181192.Google Scholar
Savage, P.S., Armytage, R.M.G., Georg, R.B., Halliday, A.E., 2014. High temperature silicon isotope geochemistry. Lithos 190–191, 500519.Google Scholar
Savin, S.M., Lee, M., 1988. Isotopic study of phyllosicates. In: Bailey, S.W. (ed.), Hydrous phyllosilicates (exclusive of muscovite). Mineralogical Society of America Reviews in Mineralogy 19, 189–223.Google Scholar
Schairer, J.F., Bowen, N.L., 1935. Preliminary report on equilibrium relations between feldspathoids, alkali feldspars and silica. Transactions of the American Geophysical Union, 16th Annual Meeting, 325–328.Google Scholar
Scherer, E., Cameron, K., Blichert-Toft, J., 2000. Lu–Hf garnet geochronology: Closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta 64, 34133432.Google Scholar
Schidlowski, M, 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313318.Google Scholar
Schijf, Y., Christenson, E.A., Byrne, R.H., 2015. YREE scavenging in seawater: A new look at an old model. Marine Chemistry 177, 460471.Google Scholar
Schiller, D., Finger, F., 2019. Application of Ti-in-zircon thermometry to granite studies: Problems and possible solutions. Contributions to Mineralogy and Petrology 174, article 51.Google Scholar
Schmidt, M.W., Connolly, A.D., Gunther, D., Bogaerts, M., 2006. Element partitioning: The role of melt structure and composition. Science 312, 16461650.Google Scholar
Schoenberg, R., Kamber, B.S., Collerson, K.D., Eugster, O., 2002. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochimica et Cosmochimica Acta 66, 31513160.Google Scholar
Schoenberg, R., Merdian, A., Holmden, C., Kleinhanns, I.C., Hasler, K., Wille, M., Reitter, E., 2016. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs. Geochimica et Cosmochimica Acta 183, 1430.Google Scholar
Schoenberg, R., Zink, S., Staubwasser, M., Von Blanckenburg, F., 2008. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chemical Geology 249, 294306.Google Scholar
Schomberg, A.C., Wemmer, K., Warr, L., Grathoff, G., 2019. K–Ar age determinations on the fine fractions of clay mineral ‘crystallinity index standards’ from the Palaeozoic mudrocks of southwest England. Clay Minerals 54, 1526.Google Scholar
Severs, M.J., Beard, J.S., Fedele, L., Hanchar, J.M., Mutchler, S.R., Bodnar, R.J., 2009. Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions. Geochimica et Cosmochimica Acta 73, 21232141.Google Scholar
Shand, S. J., 1947. The eruptive rocks, 3rd ed. John Wiley, New York.Google Scholar
Shanks, W.C.P., III, 2013. Stable isotope geochemistry of mineral deposits. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 13, 5985.Google Scholar
Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallography (Sect. A) 32, 751767.Google Scholar
Shao, J., Yang, S., Li, C., 2012. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sedimentary Geology 265–266, 110120.Google Scholar
Sharp, Z.D., 2014. Stable isotope techniques for gas source mass spectrometry. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 291307.Google Scholar
Sharp, Z.D., 2017. Principles of stable isotope geochemistry, 2nd ed. doi: https://doi.org/10.25844/h9q1-0p82. Downloaded from https://digitalrepository.unm.edu/unm_oer/1/.Google Scholar
Shaw, D.M., 2000. Continuous (dynamic) melting theory revisited. Canadian Mineralogist 38, 10411063.Google Scholar
Shaw, D.M., 2006. Trace elements in magmas: A theoretical treatment. Cambridge University Press.Google Scholar
Shen, Y., Buick, R., 2004. The antiquity of microbial sulfate reduction. Earth-Science Reviews 64, 243272.Google Scholar
Sheppard, S.M.F., 1977. The Cornubian batholith, SW England: D/Hand 18O/16O studies of kaolinite and other alteration minerals. Journal of the Geological Society 133, 573591.Google Scholar
Sheppard, S.M.F., 1981. Stable isotope geochemistry of fluids. Physics and Chemistry of the Earth 13–14, 419445.Google Scholar
Sheppard, S.M.F., Gilg, H.A., 1996. Stable isotope geochemistry of clay minerals: ‘The story of sloppy, sticky, lumpy and tough’ Cairns-Smith (1971). Clay Minerals 31, 124.Google Scholar
Shervais, J.W., 1982. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101118.Google Scholar
Sheth, H.C., 2008. Do major oxide tectonic discrimination diagrams work? Evaluating new log-ratio and discriminant-analysis–based diagrams with Indian Ocean mafic volcanics and Asian ophiolites. Terra Nova 20, 229236.Google Scholar
Shimura, T., Kemp, A.I.S., 2015. Tetrahedral plot diagram: A geometrical solution for quaternary systems. American Mineralogist 100, 25452547.Google Scholar
Shragge, J., Snow, C.A., 2006. Bayesian geochemical discrimination of mafic volcanic rocks. American Journal of Science 306, 191209.Google Scholar
Shuster, D.L., Farley, K.A., 2005. Diffusion kinetics of proton induced 21Ne, 3He, and 4He in quartz. Geochimica et Cosmochimica Acta 69, 23492359.Google Scholar
Shuster, D.L., Vasconcelos, P.M., Heim, J.A., Farley, K.A., 2005. Weathering geochronology by (U–Th)/He dating of goethite. Geochimica et Cosmochimica Acta 69, 659673.Google Scholar
Shuster, D.L., Flowers, R.M., Farley, K.A., 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters 249, 148161.Google Scholar
Simkus, D.N., Aponte, J.C., Hilts, R.W., Elisila, J.E., Herd, C.D.K., 2019. Compound-specific carbon isotope compositions of aldehydes and ketones in the Murchison meteorite. Meteoritics and Planetary Science 54, 142156.Google Scholar
Sims, K.W.W., DePaolo, D.J., 1997. Inferences about mantle magma sources from incompatible element concentration ratios in oceanic basalts. Geochimica et Cosmochimica Acta 61, 765784.Google Scholar
Sio, C.K.I., Dauphas, N., Teng, F.-Z., Chaussidon, M., Helz, R.T., Roskosz, M., 2013. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses. Geochmica et Cosmochimica Acta 123, 302321.Google Scholar
Skelton, A., Lewerentz, A., Kleine, B., Webster, D., Pitcairn, I., 2015. Structural channelling of metamorphic fluids on Islay, Scotland: Implications for paleoclimatic reconstruction. Journal of Petrology 56, 21452172.Google Scholar
Smit, K.V., Shirey, S.B., Stern, R.A., Steele, A., Wang, W., 2016. Diamond growth from C–H–N–O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ13C–δ15N–N content in Marange mixed-habit diamonds. Lithos 265, 6881.Google Scholar
Smith, P.M., Asimow, P.D., 2005. Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochemistry Geophysics Geosystems 6, Q02004.Google Scholar
Smith, S.E., Humphries, S.E., 1998. Geochemistry of basaltic rocks from the TAG hydrothermal mound (26°08′ N), Mid-Atlantic Ridge. In: Herzig, P.M., Humphries, S.E., Miller, D.J., and Zierenberg, R.A. (eds.), Proceedings of the Ocean Drilling Program, scientific results 158. Texas A & M University Press, College Station. 213229.Google Scholar
Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re–Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science 271, 10991102.Google Scholar
Sobolev, A.V., Hofmann, A.W., Jochum, K.P., Kuzmin, D.V., Stoll, B., 2011. A young source for the Hawaiian plume. Nature 476, 434437.Google Scholar
Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311324.Google Scholar
Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT‐estimations. GFF 119, 5560.Google Scholar
Sossi, P.A., O’Neill, H.StC., 2017. The effect of bonding environment on iron isotope fractionation between minerals at high temperature. Geochimica et Cosmochimica Acta 196, 121143.Google Scholar
Sossi, P.A., Nebel, O., Foden, J., 2016. Iron isotope systematics in planetary reservoirs. Earth and Planetary Science Letters 452, 295308.Google Scholar
Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes I: General model and energy constrained assimilation and fractional crystallization (EC-AFC) formulation. Journal of Petrology 42, 9991018.Google Scholar
Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207221.Google Scholar
Stakes, D.S., 1991. Oxygen and hydrogen isotope compositions of oceanic plutonic rocks: High-temperature deformation and metamorphism of oceanic layer 3. In: Taylor, H.P., O’Neill, J.R., Kaplan, I.R. (eds.), Stable isotope geochemistry: A tribute to Samuel Epstein. Geochemical Society Special Publication 3, 77–90.Google Scholar
Stakes, D.S., O’Neill, J.R., 1982. Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. Earth and Planetary Science Letters 57, 285304.Google Scholar
Stakes, D.S., Taylor, H.P., Fisher, R.L., 1984. Oxygen isotope and geochemical characterization of hydrothermal alteration in ophiolite complexes and modern oceanic crust. In: Gass, I.G., Lippard, S.J., Shelton, A.W. (eds.), Ophiolites and oceanic lithosphere. Blackwell Scientific Publications, Oxford. 199214.Google Scholar
Stanley, C.R., 1993. Effects of non-conserved denominators on Pearce element ratio diagrams. Mathematical Geology 25, 10491070.Google Scholar
Stanley, C.R., Russell, J.K., 1989. Petrologic hypothesis testing with Pearce element ratio diagrams: Derivation of diagram axes. Contributions to Mineralogy and Petrology 103, 7889.Google Scholar
Staudigel, H., Bryan, W.B., 1981. Contrasted glass–whole rock compositions and phenocryst redistribution, IPOD sites 417 and 418. Contributions to Mineralogy and Petrology 78, 255262.Google Scholar
Steiger, R.H., Jager, E., 1977. Subcommission on geochronology: Convention of the use of decay constants in geo- and cosmo-chronology. Earth and Planetary Science Letters 36, 359362.Google Scholar
Stein, L.Y., Klotz, G., 2016. The nitrogen cycle. Current Biology 26, R83R101.Google Scholar
Steiner, J.C., Jahns, R.H., Luth, W.C., 1975. Crystallisation of alkali feldspars and quartz in the haplogranite system NaAlSi3O8–KAlSi3O8–SiO2–H2O at 4 kb. Geological Society of America Bulletin 86, 8398.Google Scholar
Stepanov, A.S., Hermann, J., Rubatto, D., Rapp, R.P., 2012. Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology 300–301, 200220.Google Scholar
Stern, R.A., Hanson, G.N., Shirey, S.B., 1989. Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province. Canadian Journal of Earth Sciences 26, 16881712.Google Scholar
Stichel, T., Frank, M., Rickli, J., Haley, B.A., 2012. The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean. Earth & Planetary Science Letters 317, 282294.Google Scholar
Stimac, J., Hickmott, D., 1994. Trace-element partition-coefficients for ilmenite, orthopyroxene and pyrrhotite in rhyolite determined by micro-PIXE analysis. Chemical Geology 117, 313330.Google Scholar
Stracke, A., 2016. Mantle geochemistry. In: White, W.M. (ed.), Encyclopedia of geochemistry. Springer, Cham. 867877.Google Scholar
Stracke, A., Hofmann, A.W., Hart, S.R., 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems 6(5). doi:10.1029/2004GC000824.Google Scholar
Stracke, A., Scherer, E.E., Reynolds, B.C., 2014. Application of isotope dilution in geochemistry. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 7186.Google Scholar
Streck, M.J., Grunder, A.L., 1997. Compositional gradients and gaps in high-silica rhyolites of the Rattlesnake tuff, Oregon. Journal of Petrology 38, 133163.Google Scholar
Stüeken, E.E., Kipp, M.A., Koehler, M.C., Buick, R., 2016. The evolution of Earth’s bio-geochemical nitrogen cycle. Earth-Science Reviews 160, 220239.Google Scholar
Stüeken, E.E., Zaloumis, J., Meixnerová, J., Buick, R., 2017. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks. Geochimica et Cosmochimica Acta 217, 8094.Google Scholar
Suarez, C.A., Edmonds, M., Jones, A.P., 2019. Earth catastrophes and their impact on the carbon cycle. Elements 15, 301306.Google Scholar
Sun, C., Liang, Y., 2013. The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts. Chemical Geology 358, 2336.Google Scholar
Sun, C., Graff, M., Liang, Y., 2017. Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochimica et Cosmochimica Acta 206, 273295.Google Scholar
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (eds.), Magmatism in ocean basins. Geological Society Special Publication 42. Geological Society, London. 313345.Google Scholar
Sun, X.-L., Wu, Y.-J., Wang, H.-L-, Zhao, Y.-G., Zhang, G.-L., 2014. Mapping soil particle size fractions using compositional kriging, cokriging and additive log-ratio cokriging in two case studies. Mathematical Geosciences 46, 429443.Google Scholar
Sutton, S.R., Newville, M., 2014. Synchrotron X-ray spectroscopic analysis. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 213230.Google Scholar
Suzuoki, T., Epstein, S., 1976. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochimica et Cosmochimica Acta, 40, 12291240.Google Scholar
Tang, D.-M., Qin, K.-Z., Sun, H., Su, B.-X., Xiao, Q.-H., 2012. The role of crustal contamination in the formation of Ni–Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwest China: Evidence from trace element geochemistry, Re–Os, Sr–Nd, zircon Hf–O, and sulfur isotopes. Journal of Asian Earth Sciences 49, 145160.Google Scholar
Tang, M., Chen, K., Rudnick, R.L., 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372375.Google Scholar
Tang, M., Rudnick, R.L., Chauvel, C., 2014. Sedimentary input to the source of Lesser Antilles lavas: A Li perspective. Geochimica et Cosmochimica Acta 144, 4358.Google Scholar
Tanimizu, M., 2000. Geophysical determination of the 138La β-decay constant. Physical Review C 62, 017601.Google Scholar
Tatsumoto, M., Knight, R.J., Allegre, C.J., 1973. Time difference in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science 180, 12791283.Google Scholar
Taylor, H.P., 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology 69, 843883.Google Scholar
Taylor, H.P., 1978. Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth and Planetary Science Letters 38, 177210.Google Scholar
Taylor, H.P., Forester, R.W., 1971. Low-O-18 igneous rocks from the intrusive complexes of Skye, Mull, and Ardnamurchan, western Scotland. Journal of Petrology 12, 465497.Google Scholar
Taylor, H.P., Sheppard, S.M.F., 1986. Igneous rocks: I: Processes of isotopic fractionation and isotope systematics. In: Valley, J.W., Taylor, H.P., Jr, O’Neill, J.R. (eds.), Stable isotopes in high-temperature geological processes. Reviews in Mineralogy 16. Mineralogical Society of America. 277271.Google Scholar
Taylor, H.P., O’Neill, J.R., Kaplan, I.R. (eds.), 1991. Stable isotope geochemistry: A tribute to Samuel Epstein. Geochemical Society Special Publication 3.Google Scholar
Taylor, P.N., Moorbath, S., Goodwin, R., Petrykowski, A.C., 1980. Crustal contamination as an indicator of the extent of early Archaean continental crust: Pb isotopic evidence from the late Archaean gneisses of west Greenland. Geochimica et Cosmochimica Acta 44, 14371453.Google Scholar
Taylor, R.P., Fryer, B.J., 1980. Multiple-stage hydrothermal alteration in porphyry copper systems in northern Turkey: The temporal interplay of potassic, propylitic, and phyllic fluids. Canadian Journal of Earth Sciences 17(7), 901926.Google Scholar
Taylor, S.R., McLennan, S.M., 1981. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society A 301, 381399.Google Scholar
Taylor, S.R., McLennan, S.M., 1985. The continental crust: Its composition and evolution. Blackwell, Oxford.Google Scholar
Taylor, S.R., McLennan, S.M., 2009. Planetary crusts: Their composition, origin and evolution. Cambridge University Press, Cambridge.Google Scholar
Telus, M., Alexander, C.M.O’D., Hauri, E.H., Wang, J., 2019. Calcite and dolomite formation in the CM parent body: Insight from in situ C and O isotope analyses. Geochimica et Cosmochimica Acta 260, 275291.Google Scholar
Teng, F.-Z., 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry 82, 219287.Google Scholar
Teng, F.-Z., Dauphas, N., Helz, R.T., 2008. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science 320, 16201622.Google Scholar
Teng, F.-Z., Dauphas, N., Helz, R.T., Gao, S., Huang, S., 2011. Diffusion driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth and Planetary Science Letters 308, 317324.Google Scholar
Teng, F.-Z., Hu, Y., Chauvel, C., 2016. Magnesium isotope geochemistry in arc volcanism. Proceedings of the National Academy of Sciences 113, 70827087.Google Scholar
Teng, F.-Z., Li, W.-Y., Rudnick, R.L., Gardner, L.R., 2010. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters 300, 6371.Google Scholar
Teng, F.-Z., Wadhwa, M., Helz, R.T., 2007. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth and Planetary Science Letters 261, 8492.Google Scholar
Teng, F.-Z., Watkins, J.M., Dauphas, N., 2017a. Non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry, 82, 885.Google Scholar
Teng, F.-Z., Watkins, J.M., Dauphas, N., 2017b. Non-traditional stable isotopes: Retrospective and prospective. Reviews in Mineralogy and Geochemistry, 82, 126.Google Scholar
Tepley, F.J., III, Lundstrom, C.C., McDonough, W.F., Thompson, A., 2010. Trace element partitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1 atmosphere pressure. Lithos 118, 8294.Google Scholar
Thode, H.G., Monster, J., 1965. Sulfur isotope geochemistry of petroleum, evaporites and ancient seas. American Association of Petroleum Geologists Memoir 4, 367377.Google Scholar
Thomas, C.W., Aitchison, J., 2006. Log-ratios and geochemical discrimination of Scottish Dalradian limestones: A case study. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds.), Compositional data analysis in the geosciences: From theory to practice. Geological Society Special Publication 264. Geological Society, London. 161174.Google Scholar
Thomas, J.B., Bodnar, R.J., Shimizu, N., Sinha, A.K., 2002. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimica et Cosmochimica Acta 66, 28872901.Google Scholar
Thomazo, C., Papineau, D., 2013. Biogeochemical cycling of nitrogen on the early Earth. Elements 9, 345351.Google Scholar
Thompson, M., Walsh, J.N., 1983. A handbook of inductively coupled plasma spectrometry. Blackie, Glasgow.Google Scholar
Thompson, R.N., 1984. Dispatches from the basalt front. 1. Experiments. Proceedings of the Geological Association 95, 249262.Google Scholar
Thompson, R.N., Morrison, M.A., Dickin, A.P., Hendry, G.L., 1983. Continental flood basalts … Arachnids rule OK? In: Hawkesworth, C.J., Norry, M.J. (eds.), Continental basalts and mantle xenoliths. Shiva, Nantwich. 158185.Google Scholar
Thy, P., Esbensen, K.H., 1993. Seafloor spreading and the ophiolitic sequences of the Troodos complex: A principal component analysis of lava and dike compositions. Journal of Geophysical Research 98(B7), 1179911805.Google Scholar
Tiepolo, M., Bottazzi, P., Foley, S.F., Oberti, R., Vannucci, R., Zanetti, A., 2001. Fractionation of Nb and Ta from Zr and Hf at mantle depths: The role of titanian pargasite and kaesutite. Journal of Petrology 42, 221232.Google Scholar
Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R., Foley, S.F., 2007. Trace-element partitioning between amphibole and silicate melt. Reviews in Mineralogy and Geochemistry 67, 417452.Google Scholar
Till, R., 1974. Statistical methods for the earth scientist: An introduction. Macmillan International Higher Education, London.Google Scholar
Tilton, G.R., 1973. Isotopic lead ages of chondritic meteorites. Earth and Planetary Science Letters 19, 321329.Google Scholar
Tofallis, C., 2015. Fitting equations to data with the perfect correlation relationship. Hertfordshire Business School Working Paper, http://dx.doi.org/10.2139/ssrn.2707593.Google Scholar
Tomascak, P.B., Magna, T.S., Dohmen, R., 2016. Advances in lithium isotope geochemistry. Springer International Publishing, Cham.Google Scholar
Tompkins, A.G., Rebryna, K.C., Weinberg, R.F., Schaffer, B.F., 2012. Magmatic sulfide formation by reduction of oxidized arc basalt. Journal of Petrology 53, 15371567.Google Scholar
Tostevin, R., Turchyn, A.V., Farquhar, J., Johnston, D.T., Eldridge, D.L., Bishop, J.K.B., McIlvin, M., 2014. Multiple sulfur isotope constraints on the modern sulfur cycle. Earth and Planetary Science Letters 396, 1421.Google Scholar
Totten, M.W., Hanan, M.A., 2007. Heavy minerals in shales. Developments in Sedimentology 58, 323341.Google Scholar
Totten, M.W., Hanan, M.A., Weaver, B.L., 2000. Beyond whole-rock geochemistry of shales: The importance of assessing mineralogic controls for revealing tectonic discriminants of multiple sediment sources for the Ouachita Mountain flysch deposits. Geological Society of America Bulletin 112, 10121022.Google Scholar
Trudinger, P.A., Chambers, L.A., Smith, J.W., 1985. Low-temperature sulphate reduction: Biological vs abiological. Canadian Journal of Earth Sciences 22, 19101918.Google Scholar
Trumbull, R.B., Harris, C., Frindt, S., Wigand, M., 2004. Oxygen and neodymium isotope evidence for source diversity in Cretaceous anorogenic granites from Namibia and implications for A-type granite genesis. Lithos 73, 2140.Google Scholar
Turner, S., Langmuir, C., Dungan, M., Escrig, S., 2017. The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1. Earth and Planetary Science Letters 472, 216228.Google Scholar
Tuttle, O.F., Bowen, N.L., 1958. The origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geological Society of America Memoir 74.Google Scholar
Ueda, A., Sakai, H., 1984. Sulfur isotope study of Quaternary volcanic rocks from the Japanese islands arc. Geochimica et Cosmochimica Acta 48, 18371848.Google Scholar
Urey, H.C., 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 562–581.Google Scholar
Usui, T., Alexander, C.M.O’D., Wang, J., Simon, J.I., Jones, J.H., 2012. Origin of water and mantle–crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth and Planetary Science Letters 357–358, 119129.Google Scholar
Valley, J.W., 1986. Stable isotope geochemistry of metamorphic rocks. In: Valley, J.W., Taylor, H.P., O’Neill, J.R. (eds.), Stable isotopes in high temperature geological processes. Reviews in Mineralogy 16. Mineralogical Society of America, Washington, DC. 445490.Google Scholar
Valley, J.W., 2001. Stable isotope thermometry at high temperatures. Reviews in Mineralogy and Geochemistry 43, 365413.Google Scholar
Valley, J.W., 2003. Oxygen isotopes in zircon. Zircon: Reviews in Mineralogy and Geochemistry 53, 343385.Google Scholar
Valley, J.W., Taylor, H.P., O’Neill, J.R. (eds.), 1986. Stable isotopes and high temperature geological processes. Reviews in Mineralogy 16. Mineralogical Society of America, Washington, DC.Google Scholar
Van Acken, D., Brandon, A.D., Humayun, M., 2011. High-precision osmium isotopes in enstatite and Rumuruti chondrites. Geochimica et Cosmochimica Acta 75, 40204036.Google Scholar
Van Breemen, O., Aftalion, M., Pankhurst, R.J., Richardson, S.W., 1979. Age of the Glen Dessary syenite, Invernessshire: Diachronous Palaeozoic metamorphism across the Great Glen. Scottish Journal of Geology 15, 4962.Google Scholar
Van den Boogaart, K.G., Tolosana-Delgado, R., 2013. Analyzing compositional data with R, vol. 122. Springer, Heidelberg.Google Scholar
Veizer, J., Ala, D., et al., 1999. 87Sr/86Sr, δ13C and delta δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 5988.Google Scholar
Vennemann, T.W., O’Neill, J.R., 1993. A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chemical Geology (Isotope Geoscience Section) 103, 227234.Google Scholar
Verma, S.K., Pandarinath, K., Verma, S.P., 2012. Statistical evaluation of tectono-magmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function–based multi-dimensional diagrams for acid rocks. International Geology Review 54, 325347.Google Scholar
Verma, S.P., 2010. Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal of Earth Sciences 19, 185238.Google Scholar
Verma, S.P., 2020. Road from geochemistry to geochemometrics. Springer, Singapore.Google Scholar
Verma, S.P., Agrawal, S., 2011. New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas 28, 2444.Google Scholar
Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology 355, 117133.Google Scholar
Verma, S.P., Verma, S.-K., 2013. First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences 22, 931995.Google Scholar
Verma, S.P., Pandarinath, K., Verma, S.K., Agrawal, S., 2013. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos 168–169, 113123.Google Scholar
Verma, S.P., Rivera-Gomez, M.A., Diaz-Gonzalez, L., Quiroz-Ruiz, A., 2016. Log-ratio transformed major element based multidimensional classification for altered high-Mg igneous rocks. Geochemistry, Geophysics, Geosystems 17, 49554972, doi: 10.1002/2016GC006652.Google Scholar
Vermeesch, P., 2006a. Tectonic discrimination diagrams revisited. Geochemistry, Geophysics, Geosystems 7, Q06017, doi: 10.1029/2005GC001092.Google Scholar
Vermeesch, P., 2006b. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta 70, 18391848.Google Scholar
Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical Geology 312–313, 190194.Google Scholar
Vermeesch, P., 2013. Multi-sample comparison of detrital age distributions. Chemical Geology 341, 140146.Google Scholar
Vermeesch, P., 2018a. Dissimilarity measures in detrital geochronology. Earth-Science Reviews 178, 310321.Google Scholar
Vermeesch, P., 2018b. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, doi: 10.1016/j.gsf.2018.04.001.Google Scholar
Vermeesch, P., Garzanti, E., 2015. Making geological sense of ‘Big Data’ sedimentary provenance. Chemical Geology 409, 2027.Google Scholar
Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63(3–4), 533556.Google Scholar
Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarède, F., 1999. Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters 168, 7999.Google Scholar
Villiger, S., Ulmer, P., Muntener, O., Thompson, A.B., 2004. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization: An experimental study at 1.0 GPa. Journal of Petrology 45, 23692388.Google Scholar
Voigt, M., Pearce, C.R., Fries, D.M., Baldermann, A., Oelkers, E.H., 2020. Magnesium isotope fractionation during hydrothermal seawater–basalt interaction. Geochimica et Cosmochimica Acta 272, 2135.Google Scholar
von Blanckenburg, F., O’Nions, R.K., Heinz, J.R., 1996. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from FeMn crusts. Geochimica et Cosmochimica Acta 60, 49574963.Google Scholar
Wakita, H., Rey, P., Schmitt, R.A., 1971. Abundances of the 14 rare-earth elements and 12 other trace elements in Apollo 12 samples: Five igneous and one breccia rocks and four soils. Lunar and Planetary Science Conference Proceedings 2, 1319.Google Scholar
Walker, D., Shibata, T., DeLong, S.E., 1979. Abyssal tholeiites from the Oceanographer Fracture Zone III. Phase equilibria and mixing. Contributions to Mineralogy and Petrology 70, 111125.Google Scholar
Walker, R.J., Carlson, R., Shirey, S., Boyd, F., 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of the subcontinental mantle. Geochimica et Cosmochimica Acta 53, 15831595.Google Scholar
Walker, R.J., Horan, M.F., Morgan, J.W., Becker, H., Grossman, J.N., Rubin, A.E., 2002. Comparative 187Re–187Os systematics of chondrites: Implications regarding early solar system processes. Geochimica et Cosmochimica Acta 66, 41874201.Google Scholar
Walsh, J.N., Howie, R.A., 1980. An evaluation of the performance of an inductively coupled plasma source spectrometer for the determination of major and trace constituents of silicate rocks and minerals. Mineralogical Magazine 47, 967974.Google Scholar
Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 2660.Google Scholar
Waltham, D., 2000. Mathematics: A simple tool for geologists, 2nd ed. Wiley-Blackwell, Oxford.Google Scholar
Ward, C., Mueller, U., 2012. Multivariate estimation using log ratios: A worked alternative. In: Abrahamsen, P., Hauge, R., Kolbjørnsen, O. (eds.), Geostatistics Oslo 2012. Quantitative Geology and Geostatistics 17. Springer, Dordrecht.Google Scholar
Warren, C.J., Kelley, S.P., Sherlock, S.C., McDonald, C.S., 2012. Metamorphic rocks seek meaningful cooling rate: Interpreting 40Ar/39Ar ages in an exhumed ultra-high-pressure terrane. Lithos 155, 3048.Google Scholar
Wartho, J.-A., Kelley, S.P., Brooker, R.A., Carroll, M.R., Villa, I.M., Lee, M.R., 1999. Direct measurement of Ar diffusion profiles in a gem-quality Madagascar K-feldspar using the ultra-violet laser ablation microprobe (UVLAMP). Earth and Planetary Science Letter 170, 141153.Google Scholar
Wasserburg, G.J., Jacobsen, S.B., DePaolo, D.J., McCulloch, M.T., Wen, J., 1981. Precise determinations of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta 45, 23112323.Google Scholar
Watkins, J.M., DePaolo, D.J., Watson, E.B., 2017. Kinetic fractionation of non-traditional stable isotopes by diffusion and crystal growth reactions. In: Teng, F.-Z., Watkins, J.M., Dauphas, N. (eds.), Reviews in mineralogy and geochemistry 82, 85125.Google Scholar
Watson, E.B., 1976. Two-liquid partition coefficients: Experimental data and geochemical implications. Contributions to Mineralogy and Petrology 56, 119134.Google Scholar
Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151, 413433.Google Scholar
Wei, C.-S., Zheng, Y.-F., Zhao, Z.-F., 2000. Hydrogen and oxygen isotope geochemistry of A-type granites in the continental margins of eastern China. Tectonophysics, 328, 205227.Google Scholar
Weinberg, R.F., Hasalova, P., 2015. Water-fluxed melting of the continental crust: A review. Lithos 212–215, 158188.Google Scholar
Weiss, B.P., Shuster, D.L., Stewart, S.T., 2002. Temperature on Mars from 40Ar/39Ar thermochronology of ALH84001. Earth and Planetary Science Letters 201, 465472.Google Scholar
Welch, S.A., Beard, B.L., Johnson, C.M., Braterman, P.S., 2003. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochimica et Cosmochimica Acta 67, 42314250.Google Scholar
White, W.M., 2010. Oceanic island basalts and mantle plumes: The geochemical perspective. Annual Review of Earth and Planetary Sciences 38, 133160.Google Scholar
White, W.M., 2013. Geochemistry. Wiley-Blackwell, Chichester.Google Scholar
White, W.M., 2015. Isotope geochemistry. Wiley, Chichester.Google Scholar
White, W.M., Duncan, R., 1996. Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling. In: Basu, A., Hart, S.R. (eds.), Earth processes: Reading the isotopic code. Geophysical Monograph Series 95. American Geophysical Union, Washington, DC. 183206.Google Scholar
White, W.M., Klein, E.M., 2014. Composition of the oceanic crust. In: Holland, H., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 4: 457496.Google Scholar
Whitehouse, M.J., Platt, J., 2003. Dating high-grade metamorphism: Constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology 145, 6174.Google Scholar
Whitehouse, M.J., Kamber, B.S., Fedo, C.M., Lepland, A., 2005. Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland. Chemical Geology 222, 112131.Google Scholar
Whitten, E.H.T., 1995. Open and closed compositional data in petrology. Mathematical Geology 27, 789806.Google Scholar
Wickham, S.M., Taylor, H.P., 1985. Stable isotope evidence for large-scale seawater infiltration in a regional metamorphic terrane: The Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 91, 122137.Google Scholar
Wieler, R. 2014. Noble gas mass spectrometry. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 15: 355373.Google Scholar
Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems 7, doi: 10.1029/2005GC001005.Google Scholar
Willbold, M., Stracke, A., 2010. Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology 276, 188197.Google Scholar
Wilson, A.H., Zeh, A., Gerdes, A., 2017. In situ Sr isotopes in plagioclase and trace element systematics in the lowest part of the eastern Bushveld Complex: Dynamic processes in an evolving magma chamber. Journal of Petrology 58, 327360.Google Scholar
Wilson, M., 1989. Igneous petrogenesis. Unwin Hyman, London.Google Scholar
Winchester, J.A., Floyd, P.A., 1976. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28, 459469.Google Scholar
Windrim, D.P., McCulloch, M.T., 1986. Nd and Sr isotopic systematics of central Australian granulites: Chronology of crustal development and constraints on the evolution of the lower continental crust. Contributions to Mineralogy and Petrology 94, 289303.Google Scholar
Wolff, J.A., Ramos, F.C, 2014. Processes in caldera-forming high-silica rhyolite magma: Rb-Sr and Pb isotope systematics of the Otowi member of the Bandelier tuff, Valles Caldera, New Mexico, USA. Journal of Petrology 55, 345375.Google Scholar
Wolff, J.A., Ramos, F.C., Hart, G.L., Patterson, J.D., Brandon, A.D., 2008. Columbia River flood basalts from a centralized crustal magmatic system. Nature Geoscience 1, 177180.Google Scholar
Wood, B.J., Blundy, J.D., 1997. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contributions to Mineralogy and Petrology 129, 166181.Google Scholar
Wood, B.J., Blundy, J.D., 2014. Trace element partitioning: The influences of ionic radius, cation charge, pressure, and temperature. In: Holland, H., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed. Elsevier, Oxford. 3: 421448.Google Scholar
Wood, D.A., 1979. Dynamic partial melting: Its application to petrogenesis of basalts erupted in Iceland, the Faeroe Islands, the Isle of Skye (Scotland) and the Troodos Massif (Cyprus). Geochimica et Cosmochimica Acta 43, 10311046.Google Scholar
Wood, D.A., 1980. The application of a Th–Hf–Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 1130.Google Scholar
Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., Arndt, N.T., Chauvel, C., Bouse, R.M., King, B.W., Knight, R.J., Siem, D.F., 1993. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochimica et Cosmochimica Acta 57, 36773704.Google Scholar
Woodhead, J., Hergt, J., Giuliani, A., Maas, R., Phillips, D., Pearson, D.G., Nowell, G., 2019. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir. Nature 573, 578581.Google Scholar
Woodhouse, O., Ravizza, G., Kenison Falkner, K., Statham, P., Peucker-Ehrenbrink, B., 1999. Osmium in seawater: Vertical profiles of concentration and isotopic composition in the eastern Pacific Ocean. Earth and Planetary Science Letters 173, 223233.Google Scholar
Workman, R.K., Hart, S., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 5372.Google Scholar
Workman, R.K., Hart, S.R., Jackson, M., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M., Staudigel, H., 2004. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end‐member: Evidence from the Samoan volcanic chain. Geochemistry, Geophysics, Geosystems 5(4) 2003GC000623.Google Scholar
Woronow, A., 1990. Methods for quantifying, statistically testing and graphically displaying shifts in compositional abundances across data suites. Computers and Geosciences 16, 12091233.Google Scholar
Woronow, A., Love, K.M., 1990. Quantifying and testing differences among means of compositional data. Mathematical Geology 22, 837852.Google Scholar
Wright, T.L., Marsh, B., 2016. Quantification of the intrusion process at Kīlauea volcano, Hawai’i. Journal of Volcanology and Geothermal Research 328, 3444.Google Scholar
Wu, W., Yang, J., Wirth, R., Zheng, J., Lian, D., Qiu, T., Milushi, I., 2019. Carbon and nitrogen isotopes and mineral inclusions in diamonds from chromitites of the Mirdita ophiolite (Albania) demonstrate recycling of oceanic crust into the mantle. American Mineralogist, 104, 485500.Google Scholar
Xiao, Y., Teng, F.-Z., Su, B.-X., Hu, Y., Zhou, M.-F., Zhu, B., Shi, R.-D., Huang, Q.-S., Gong, X.-H., He, Y.-S., 2016. Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet. Geochemistry, Geophysics, Geosystems 17, doi: 10.1002/2015GC006223.Google Scholar
Yang, A.Y., Zhao, T.P., Zhou, M.F., Deng, X.G., Wang, G.Q., Li, J., 2013. Os isotopic compositions of MORBs from the ultra-slow spreading Southwest Indian Ridge: Constraints on the assimilation and fractional crystallization (AFC) processes. Lithos 179, 2835.Google Scholar
Yang, X.-M., Lentz, D., 2010. Sulfur isotopic systematics of granitoids from southwestern New Brunswick, Canada: Implications for magmatic-hydrothermal processes, redox conditions, and gold mineralization. Mineralium Deposita 45, 795816.Google Scholar
Yarbrough, L., Engle, R., Easson, G., 2019. Chemostratigraphy of the Upper Jurassic (Oxfordian) Smackover Formation for Little Cedar Creek and Brooklyn Fields, Alabama. Geosciences 9, doi: 10.3390/geosciences9060269.Google Scholar
Yoder, H.S., Tilley, C.E., 1962. Origin of basalt magmas: An experimental study of natural and synthetic rock systems. Journal of Petrology 3, 342532.Google Scholar
York, D., 1966. Least-squares fitting of a straight line. Canadian Journal of Physics 44, 10791086.Google Scholar
York, D., 1967. The best isochron. Earth and Planetary Science Letters 2, 479482.Google Scholar
York, D., 1969. Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5, 320324.Google Scholar
York, D., Evensen, N., Lopez Martinex, M., de Basabe Delgado, J., 2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72, 367375.Google Scholar
Yuan, B., Yu, H., Yang, Y., Zhao, Y., Yang, J., Xu, Y., Lin, Z., Tang, X., 2018. Zone refinement related to the mineralization process as evidenced by mineralogy and element geochemistry in a chimney fragment from the Southwest Indian Ridge at 49.6°E. Chemical Geology 482, 4660.Google Scholar
Zambardi, T., Poitrasson, F., Corgne, A., Meheut, M., Quitte, G., Anand, M., 2013. Silicon isotope variations in the inner solar system: Implications for planetary formation, differentiation and composition. Geochimica et Cosmochimica Acta 121, 6783.Google Scholar
Zen, E.A., 1988. Phase relations of peraluminous granitic rocks and their petrogenetic implications. Annual Review of Earth and Planetary Sciences 16, 2151.Google Scholar
Zerkle, A.L., Poulton, S.W., Newton, R.J., Mettam, C., Claire, M.W., Bekker, A., Junium, C.K., 2017. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465467.Google Scholar
Zhang, J., Lin, Y., Yang, W., Shen, W., Hao, J., Hu, S., Cao, M., 2014. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. Journal of Analytical Atomic Spectrometry 29, 19341943.Google Scholar
Zhang, Q., Liu, X., 2019. Big data: New methods and ideas in geological scientific research. Big Earth Data 3, 17.Google Scholar
Zhang, W., Roberts, D., Pease, V., 2015. Provenance characteristics and regional implications of Neoproterozoic, Timanian-margin successions and a basal Caledonian nappe in northern Norway. Precambrian Research 268, 153167.Google Scholar
Zhang, W., Roberts, D., Pease, V., 2016. Provenance of sandstones from Caledonian nappes in Finnmark, Norway: Implication for Neoproterozoic-Cambrian palaeogeography. Tectonophysics 691, 198205.Google Scholar
Zhang, X., Omma, J., Pease, V., Scott, R., 2013. Provenance study of late Paleozoic-Mesozoic sandstones from the Taimyr Peninsula, Arctic Russia. In: Schmidt, J. (ed.), Sedimentary basins and orogenic belts. Geosciences 3, 502527.Google Scholar
Zhao, J., Chen, S., Zuo, R., 2017. Identification and mapping of litho-geochemical signatures using staged factor analysis and fractal/multifractal models. Geochemistry: Exploration, Environment, Analysis 17, 239251.Google Scholar
Zheng, Y.F., Wang, Z.R., Li, S.G., Zhao, Z.F., 2002. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm–Nd chronometer. Geochimica et Cosmochimica Acta 66, 625634.Google Scholar
Zhou, D., 1987. Robust statistics and geochemical data analysis. Mathematical Geology 19, 207218.Google Scholar
Zhou, H., Hoernle, K., Geldmacher, J., Hauff, F., Homrighausen, S., Garbe-Schönberg, D., Jung, S., 2020. Geochemistry of Etendeka magmatism: Spatial heterogeneity in the Tristan–Gough plume head. Earth and Planetary Science Letters 535, 116123.Google Scholar
Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.Google Scholar
Zou, H., 1997. Inversion of partial melting through residual peridotites or clinopyroxenes. Geochimica et Cosmochimica Acta 61, 45714582.Google Scholar
Zou, H., Reid, M.R., 2001. Quantitative modelling of trace element fractionation during incongruent dynamic melting. Geochimica et Cosmochimica Acta 65, 153162.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×