Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T17:23:53.733Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 May 2021

Sergio Pellis
Affiliation:
University of Lethbridge, Alberta
Vivien Pellis
Affiliation:
University of Lethbridge, Alberta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Understanding Animal Behaviour
What to Measure and Why
, pp. 129 - 152
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, L., & Fenton, M. B. (1992). Echolocation behaviour of vespertilionid bats (Lasiurus cinereus and Lasiurus borealis) attacking airborne targets including arctiid moths. Canadian Journal of Zoology, 70, 12921298.Google Scholar
Adams, D. B. (1980). Motivational systems of agonistic behavior in muroid rodents: A comparative review and neural model. Aggressive Behavior, 6, 295346.3.0.CO;2-Q>CrossRefGoogle Scholar
Adams, N., & Boice, R. (1989). Development of dominance in domestic rats in laboratory and seminatural environments. Behavioural Processes, 19, 127142.Google Scholar
Adler, J. (1975). Chemotaxis in bacteria. Annual Reviews of Biochemistry, 44, 341356.CrossRefGoogle ScholarPubMed
Alaverdashvili, M., & Whishaw, I. Q. (2013). A behavioral method for identifying recovery and compensation: Hand use in a preclinical stroke model using the single pellet reaching task. Neuroscience & Biobehavioral Reviews, 37, 950967.CrossRefGoogle Scholar
Alaverdashvili, M., Leblond, H., Rossignol, S., & Whishaw, I. Q. (2008). Cineradiographic (video X-ray) analysis of skilled reaching in a single pellet reaching task provides insight into relative contribution of body, head, oral, and forelimb movements in rats. Behavioural Brain Research, 192, 232247.Google Scholar
Alberts, J. R. (2005). Infancy. In Whishaw, I. Q. & Kolb, B. (Eds.), The behavior of the laboratory rat: A handbook with tests (pp. 266277). Cambridge: Oxford University Press.Google Scholar
Alberts, J. R. (2007). Huddling by rat pups: Ontogeny of individual and group behavior. Developmental Psychobiology, 49, 2232.CrossRefGoogle ScholarPubMed
Alberts, J. R. (2012). Observe, simplify, titrate model, and synthesize: A paradigm for analyzing behavior. Behavioural Brain Research, 231, 250261.Google Scholar
Alberts, J. R., & Galef, B. G. (1973). Olfactory cues and movement: Stimuli mediating intraspecific aggression in the wild Norway rat. Journal of Comparative & Physiological Psychology, 85, 233242.Google Scholar
Alcock, J. (2013). Animal behavior: An evolutionary approach. 10th edition. Cambridge: Sinauer Associates.Google Scholar
Aldis, O. (1975). Play fighting. Cambridge: Academic Press.Google Scholar
Almli, R. C., & Fisher, R. S. (1977). Infant rats: Sensorimotor ontogeny and effects of substantia nigra destruction. Brain Research Bulletin, 2, 425459.Google Scholar
Altman, J., & Sudarshan, K. (1975). Postnatal development of locomotion in the laboratory rat. Animal Behaviour, 23, 896920.Google Scholar
Altmann, J. (1974). Observational study of behaviour: Sampling methods. Behaviour, 48, 141.Google Scholar
Anderson, D. J., & Perona, P. (2014). Toward a science of computational ethology. Neuron, 84, 1831.Google Scholar
Archer, J. (1988). The behavioural biology of aggression. Cambridge: Cambridge University Press.Google Scholar
Archer, J., & Huntingford, F. (1994). Game theory models and escalation of animal fights. In Potegal, M. & Knutson, J. F. (Eds.), Dynamics of aggression: Biological and social processes in dyads and groups (pp. 331). Cambridge: Lawrence Erlbaum Associates.Google Scholar
Armitage, J. P. (1997). Behavioural responses of bacteria to light and oxygen. Archives of Microbiology, 168, 249261.Google Scholar
Baerends, G. P. (1976). The functional organization of behaviour. Animal Behaviour, 24, 726738.Google Scholar
Barnett, S. A. (1975). The rat: A study in behavior. Cambridge: The University of Chicago Press.Google Scholar
Barnett, S. A., & Marples, T. G. (1981). The ‘threat posture’ of wild rats: A social signal or an anthropomorphic assumption? In Brain, P. F. & Benton, D. (Eds.), Multidisciplinary approaches to aggression research (pp. 3952). Cambridge: Elsevier/North-Holland Biomedical Press.Google Scholar
Barrett, L. (2011). Beyond the brain: How body and environment shape animal and human minds. Cambridge: Princeton University Press.Google Scholar
Bell, H. C. (2013). Control in living systems: An exploration of the cybernetic properties of interactive behaviour. Unpublished doctoral dissertation, University of Lethbridge, Lethbridge, AB.Google Scholar
Bell, H. C. (2014). Behavioral variability in the service of constancy. International Journal of Comparative Psychology, 27, 196217.CrossRefGoogle Scholar
Bell, H. C., & Pellis, S. M. (2011). A cybernetic perspective on food protection in rats: Simple rules can generate complex and adaptable behaviour. Animal Behaviour, 82, 659666.Google Scholar
Bell, H. C., Johnson, E., Judge, K. A., Cade, W. H., & Pellis, S. M. (2012). How is a cricket like a rat? Insights from the application of cybernetics to evasive food protective behaviour. Animal Behaviour, 84, 843851.Google Scholar
Bell, H. C., Bell, G. D., Schank, J. A., & Pellis, S. M. (2015). Attack and defense of body targets in play fighting: Insights from simulating the ‘keep away game’ in rats. Adaptive Behaviour, 23, 371380.Google Scholar
Bernard, C. (1865/1927). An introduction to the study of experimental medicine (H. C. Green, trans.). Cambridge: Macmillan.Google Scholar
Berridge, K. C., & Fentress, J. C. (1986). Deterministic versus probabilistic models of behaviour: Taste-elicited actions in rats as a case study. Animal Behaviour, 34, 871880.Google Scholar
Berthoz, A. (2009). The human brain ‘projects’ upon the world, simplifying principles and rules for perception. In Berthoz, A. & Christen, Y. (Eds.), Neurobiology of the ‘Umwelt’: How living beings perceive the world (pp. 1727). Cambridge: Springer-Verlag.Google Scholar
Berthoz, A., & Christen, Y. (2009). Neurobiology of the ‘Umwelt’: How living beings perceive the world. Cambridge: Springer-Verlag.Google Scholar
Blake, B. E., & McCoy, K. A. (2015). Hormonal programming of rat social play behavior: Standardized techniques will aid synthesis and translation to human health. Neuroscience & Biobehavioral Reviews, 55, 184197.Google Scholar
Blanchard, D. C., & Blanchard, R. J. (1990). The colony model of aggression and defense. In Dewsbury, D. A. (Ed.), Contemporary issues in comparative psychology (pp. 410430). Cambridge: Sinauer Associates.CrossRefGoogle Scholar
Blanchard, R. J., & Blanchard, D. C. (1994). Environmental targets and sensorimotor systems in aggression and defence. In Cooper, S. J. & Hendrie, C. A. (Eds.), Ethology and Psychopharmacology (pp. 133157). Cambridge: John Wiley & Sons.Google Scholar
Blanchard, R. J., Blanchard, D. C., Takahashi, T., & Kelley, M. J. (1977). Attack and defensive behaviour in the albino rat. Animal Behaviour, 25, 622634.Google Scholar
Blanchard, R. J., O’Connell, V., & Blanchard, D. C. (1979). Attack and Defensive behaviors in the albino mouse. Aggressive Behavior, 5, 622634.Google Scholar
Bolhuis, J. J., & Giraldeau, L-A. (2005). The behavior of animals: Mechanisms, function, and evolution. Cambridge: Blackwell.Google Scholar
Bowers, R. I. (2017). Behavior systems. In Vonk, J. & Shackelford, T. K. (Eds.), Encyclopedia of animal cognition and behavior (pp. 18). Cambridge: Springer.Google Scholar
Brain, P. F. (1981). Differentiating types of attack and defense in rodents. In Brain, P. F. & Benton, D. (Eds.), Multidisciplinary approaches to aggression research (pp. 5377). Cambridge: Elsevier/North-Holland Biomedical Press.Google Scholar
Brain, P. F., Parmigiani, S., Blanchard, R., & Mainardi, D. (1990). Fear and Defense. Cambridge: Harwood Academic Publishers.Google Scholar
Breed, M. D., Meaney, C., Deuth, D., & Bell, W. J. (1981). Agonistic interactions of two cockroach species, Gromphadorhina portentosa and Supella longipalpa (Orthoptera (Dictyoptera): Blaberidae, Blattellidae). Journal of the Kansas Entomological Society, 54, 197208.Google Scholar
Brentari, C. (2015). Jakob von Uexküll: The discovery of the Umwelt between biosemiotics and theoretical biology. Cambridge: Springer-Verlag.Google Scholar
Brindley, G. S. (1965). How does an animal that is dropped in a non-upright posture know the angle through which it must turn in the air so that its feet point to the ground? Journal of Physiology (London) , 180, 20.Google Scholar
Brown, A. E. X., & de Bivort, B. (2018). Ethology as a physical science. Nature Physics, https://doi.org/10.1038/s41567-018-0093-0 CrossRefGoogle Scholar
Brown, A. R., & Teskey, G. C. (2014). Motor cortex is functionally organized as a set of spatially distinct representations for complex movements. The Journal of Neuroscience, 34, 1357413585.Google Scholar
Brown, R. E. (1985). The rodents II: Suborder Myomorpha. In Brown, R. E. & MacDonald, D. W. (Eds.), Social odours in mammals, Vol. 1. (pp. 345457). Cambridge: Clarendon Press.Google Scholar
Burgdorf, J., Kroes, R. A., Moskal, J. R., Pfaus, J. G., Brudzynski, S. M., & Panksepp, J. (2008). Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: Behavioral concomitants, relationship to reward, and self-administration of playback. Journal of Comparative Psychology, 122, 357367.Google Scholar
Burghardt, G. M. (1980). Behavioral and stimulus correlates of vomeronasal functioning in reptiles: Feeding, grouping, sex, and tongue use. In D. Müller-Schwarze & R. M. Silverstein (Eds.), Chemical signals. Vertebrates and aquatic invertebrates (pp. 275301). Cambridge: Plenum Press.Google Scholar
Burghardt, G. M. (2005). The genesis of animal play: Testing the limits. Cambridge: MIT Press.Google Scholar
Burghardt, G. M., & Bowers, R. I. (2017). From instinct to behavior systems: An integrated approach to ethological psychology. In Call, J. (Ed.-in-Chief), APA handbook of comparative psychology: Vol. 1. Basic concepts, methods, neural substrate, and behavior (pp. 333364). Cambridge: American Psychological Association.CrossRefGoogle Scholar
Burghardt, G. M., Bartmess-LeVasseur, J. N., Browning, S. A., Morrison, K. E., Stec, C. L., Zachau, C. E., & Freeberg, T. M. (2012). Minimizing observer bias in behavioral studies: A review and recommendations. Ethology, 118, 511517.Google Scholar
Burke, C. J., Kisko, T. M., Euston, D. R., & Pellis, S. M. (2018). Do juvenile rats use specific ultrasonic calls to coordinate their social play? Animal Behaviour, 140, 8192.Google Scholar
Burkhart, R. W. Jr. (2005). Patterns of behavior. Konrad Lorenz, Niko Tinbergen, and the founding of ethology. Cambridge: The University of Chicago Press.Google Scholar
Carter, S. C. (1985). Female sexual behavior. In Siegel, H. I. (Ed.), The hamster: Reproduction and behavior (pp. 173189). Cambridge: Plenum Press.Google Scholar
Casarrubea, M., Magnusson, M. S., Anguera, M. T., Jonsson, G. K., Castañer, M., Santangelo, A., Palacino, M., Aiello, S., Faulisi, F., Raso, G., Puigarnau, S., Camerino, O., di Giovanni, G., & Crescimanno, G. (2018). T-pattern detection and analysis for the discovery of hidden features of behaviourJournal of Neuroscience Methods310, 2432.Google Scholar
Cheng, J.-T., Schallert, T., DeRyck, M., & Teitelbaum, P. (1981). Galloping induced by pontine tegmentum damage in rats: A form of “Parkinsonian festination” not blocked by haloperidol. Proceedings of the National Academy of Science (USA) , 78, 32793283.Google Scholar
Clark, A. (1996). Being there: Putting brain, body and world together again. Cambridge: MIT Press.Google Scholar
Clark, D. C., & Moore, A. J. (1994). Social interactions and aggression among male Madagascar hissing cockroaches (Gromphadorhina portentosa) in groups (Dictyoptera: Blaberidae). Journal of Insect Behavior, 7, 199215.Google Scholar
Clark, R. W. (2016). The hunting and feeding behavior of wild rattlesnakes. In Schuett, G. W., Reiserer, R. S., Smith, C. F. & Feldner, M. J. (Eds.), The rattlesnakes of Arizona (pp. 91118). Cambridge: Eco Publishing.Google Scholar
Colvin, P. V. (1973). Agonistic behaviour in males of five species of voles. Animal Behaviour, 21, 471480.Google Scholar
Cools, A. R., Brachten, R., Heeren, D., Willemen, A., & Ellenbroek, B. (1990). Search for the neurobiological profile of individual-specific features of Wistar rats. Brain Research Bulletin, 24, 4969.Google Scholar
Cooper, W. E. Jr., & Burghardt, G M. (1990). Vomerolfaction and vomodor. Journal of Chemical Ecology, 16, 103105.Google Scholar
Cowan, P. E. (1981). Early growth and development of roof rats. Journal of Mammalogy, 45, 239250.Google Scholar
Cziko, G. (2000). The things we do. Using the lessons of Bernard and Darwin to understand the what, how, and why of our behavior. Cambridge: MIT Press.Google Scholar
Dawkins, M. S. (2007). Observing animal behaviour. Design and analysis of quantitative data. Cambridge: Oxford University Press.Google Scholar
Delius, J. D. (1969). A stochastic analysis of the maintenance behaviour of skylarks. Behaviour, 33, 137177.Google Scholar
Dempster, E. R., & Perrin, M. R. (1989). A comparative study of agonistic behaviour in hairy-footed gerbils (genus Gerbillurus). Ethology, 83, 4359.Google Scholar
Donaldson, T. N., Barto, D., Bird, C. W., Magcalas, C. M., Rodriguez, C. I., Fink, B. C., & Hamilton, D. A. (2018). Social order: Using the sequential structure of social interaction to discriminate abnormal social behavior in the rat. Learning & Motivation, 61, 4151.Google Scholar
Dorwood, D. F. (1977). A case of comeback: The Cape Barren goose. Australian Natural History, 19, 130135.Google Scholar
Drai, D., & Golani, I. (2001). See: A tool for the visualization and analysis of rodent exploratory behavior. Neuroscience & Biobehavioral Reviews, 25, 409426.Google Scholar
Driver, P. M., & Humphries, N. (1988). Protean behavior: The biology of unpredictability. Cambridge: Oxford University Press.Google Scholar
Dugatkin, L. A., & Trut, L. (2017). How to tame a fox (and build a dog). Cambridge: University of Chicago Press.Google Scholar
Eberhard, W. G. (1990). Imprecision in the behavior of Leptomorphus sp. (Diptera, Mycetophilidae) and evolutionary origin of new behavior patterns. Journal of Insect Behavior, 3, 327357.Google Scholar
Eilam, D. (1997). Postnatal development of body architecture and gait in several rodent species. Journal of Experimental Biology, 200, 13391350.Google Scholar
Eilam, D., & Golani, I. (1988). The ontogeny of exploratory behavior in the house rat (Rattus rattus): The mobility gradient. Developmental Psychobiology, 21, 679710.Google Scholar
Eilam, D., & Golani, I. (1989). Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behavioural Brain Research, 34, 199211.Google Scholar
Eilam, D., & Golani, I. (1990). Home base behavior in amphetamine-treated tame wild rats (Rattus norvegicus). Behavioural Brain Research, 36, 161170.CrossRefGoogle ScholarPubMed
Eilam, D., Adijes, M., & Velinsky, J. (1995). Uphill locomotion in mole rats: A possible advantage of backward locomotion. Physiology & Behavior, 58, 483489.Google Scholar
Ellis, M. E. (1982). Evolution of aversive information processing: A temporal trade-off hypothesis. Brain, Behavior & Evolution, 21, 151160.Google Scholar
Eshkol, N, & Wachmann, A. (1958). Movement notation. Cambridge: Weidenfeld & Nicholson.Google Scholar
Ewert, J-P. (2005). Stimulus perception. In Bolhuis, J. J. & Giraldeau, L-A. (Eds.), The behavior of animals. Mechanisms, function, and evolution (pp. 1340). Cambridge: Blackwell.Google Scholar
Fagen, R. A. (1981). Animal play behavior. Cambridge: Oxford University Press.Google Scholar
Fagen, R., Conitz, J., & Kunibe, E. (2000). Observing behavioral qualities. International Journal of Comparative Psychology, 10, 167179.Google Scholar
Fernández-Espejo, E., & Mir, D. (1990). Ethological analysis of the male rat’s socioagonistic behaviour in a resident-intruder paradigm. Aggressive Behavior, 16, 4155.Google Scholar
Field, E. F., & Pellis, S. M. (2008). The brain as the engine of sex differences in the organization of movement in rats. Archives of Sexual Behavior, 37, 3042.Google Scholar
Field, E. F., & Whishaw, I. Q. (2008). Sex differences in the organization of movement. In Becker, J. B., Berkley, K. J., Geary, N., Hampson, E., Herman, J. P., & Young, E. A. (Eds.), Sex differences in the brain from genes to behavior (pp.155175). Cambridge: Oxford University Press.Google Scholar
Field, E. F., Whishaw, I. Q., & Pellis, S. M. (1996). An analysis of sex differences in the movement patterns used during the food wrenching and dodging paradigm. Journal of Comparative Psychology, 110, 298306.Google Scholar
Field, E. F., Martens, D. J., Watson, N. V., & Pellis, S. M. (2005). Sex differences in righting from supine to prone: A masculinized skeletomusculature is not required. Journal of Comparative Psychology, 119, 238245.Google Scholar
Finkelstein, L. (1982). What is not measurable, make measurable. Measurement & Control, 15, 2532.Google Scholar
Flash, T., & Hochner, R. (2005). Motor primitives in vertebrates and invertebrates. Current Opinion in Neurobiology, 15, 660665.Google Scholar
Foroud, A., & Pellis, S. M. (2003). The development of ‘roughness’ in the play fighting of rats: A Laban Movement Analysis perspective. Developmental Psychobiology, 42, 3543.Google Scholar
Foroud, A., & Whishaw, I. Q. (2006). Changes in the kinematic structure and non-kinematic features of movements during skilled reaching after stroke: A Laban Movement Analysis in two case studies. Journal of Neuroscience Methods, 158, 137149.Google Scholar
Foroud, A., & Whishaw, I.Q. (2012). The consummatory origins of visually guided reaching in human infants: A dynamic integration of whole-body and upper-limb movements. Behavioural Brain Research, 231, 343355.CrossRefGoogle ScholarPubMed
Galef, B. G. Jr. (1996). Social enhancement of food preferences in Norway rats: A brief review. In Heyes, C. M. & Galef, B. G. Jr. (Eds.), Social learning in animals: The roots of culture, (pp. 4964). Cambridge: Academic Press.Google Scholar
Gallistel, C. R. (1980). The organization of action: A new synthesis. Cambridge: Lawrence Erlbaum Associates.Google Scholar
Gambaryan, P. P. (1974). How mammals run: Anatomical adaptations. Cambridge: John Wiley & Sons.Google Scholar
Garamszegi, L. Z., Calhim, S., Gergely, N. D., Hurd, P. L., Jørgensen, C., Kutsukake, N., Lajeunesse, M. J., Pollard, K. A., Schielzeth, H., Symonds, M. R. E., & Nakagawa, S. (2009). Changing philosophies and tools for statistical inferences in behavioral ecology. Behavioral Ecology, 20, 13631375.Google Scholar
Geist, V. (1978). On weapons, combat and ecology. In Krames, L., Pliner, P. & Alloway, T. (Eds.), Advances in the study of communication and affect. Vol. 4, Aggression, dominance and individual spacing (pp. 130). Cambridge: Plenum Press.Google Scholar
Glimcher, P. W. (2003). Decisions, uncertainty, and the brain: The science of neuroeconomics. Cambridge: MIT Press.Google Scholar
Golan, L., Radcliffe, C., Miller, T., O’Connell, B., & Chiszar, D. (1982). Trailing behavior in prairie rattlesnakes (Crotalus viridus). Journal of Hepertology, 16, 287293.Google Scholar
Golani, I. (1976). Homeostatic motor processes in mammalian interactions: A choreography of display. In Bateson, P. P. G. & Klopfer, P. H. (Eds.), Perspectives in ethology, vol. 2. (pp. 69134). Cambridge: Plenum.Google Scholar
Golani, I. (1981). The search for invariants in behavior. In Immelmann, K., Barlow, G. W., Petrinovich, L. & Cain, M. (Eds.), Behavioral development: The Bielefeld interdisciplinary project (pp. 372390). Cambridge: Cambridge University Press.Google Scholar
Golani, I. (2012). The developmental dynamics of behavioral growth processes in rodent egocentric and allocentric space. Behavioural Brain Research, 231, 309316.Google Scholar
Golani, I., Wolgin, D. L., & Teitelbaum, P. (1979). A proposed natural geometry of recovery from akinesia in the lateral hypothalamic rat. Brain Research, 164, 237267.Google Scholar
Gomez-Marin, A., & Ghazanfar, A. A. (2019). The life of behavior. Neuron, 104, 2536.Google Scholar
Gomez-Marin, A., Partoune, N., Stephens, G. J., & Louis, M. (2012). Automated tracking of animal posture and movement during exploration and sensory orientation behaviors. PLoS ONE, 7(8): e41642. doi:10.1371/journal.pone.0041642 Google Scholar
Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M., & Mainen, Z. F. (2014). Big behavioral data: Psychology, ethology and the foundations of neuroscience. Nature Neuroscience, 17, 14551462.Google Scholar
Graziano, M. S. A. (2009). The intelligent movement machine. An ethological perspective on the primate motor system. Cambridge: Oxford University Press.Google Scholar
Graziano, M. S. A. (2016). Ethological action maps: A paradigm shift for the motor cortex. Trends in Cognitive Sciences, 20, 121132.Google Scholar
Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 55, 247304.Google Scholar
Guerra, P. A., & Mason, A. C. (2005). Information on resource quality mediates aggression between male Madagascar hissing cockroaches, Gromphadorhina portentosa (Dictyoptera: Blaberidae). Ethology, 111, 626637.Google Scholar
Han, X., Luo, S., & Han, S. (2016). Embodied neural responses to others’ suffering. Cognitive Neuroscience, 7, 114127.Google Scholar
Hartstone-Rose, A., Dickinson, E., Boettecher, M. L., & Herrel, A. (2019). A primate with a Panda’s thumb: The anatomy of the pseudothumb of Daubentonia madagascariensis . American Journal of Physical Anthropology, 171, 816.Google Scholar
Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15, 135175.Google Scholar
Herzfeld, D. J., & Shadmehr, R. (2014). Motor variability is not noise, but grist for the learning mill. Nature Neuroscience, 17, 149150.Google Scholar
Himmler, B. T., Pellis, V. C., & Pellis, S. M. (2013). Peering into the dynamics of social interactions: Measuring play fighting in rats. Journal of Visualized Experiments, 71, e4288.Google Scholar
Himmler, B. T., Kisko, T. M., Euston, D. R., Kolb, B., & Pellis, S. M. (2014). Are 50-kHz calls used as play signals in the playful interactions of rats? I. Evidence from the timing and context of their use. Behavioural Processes, 106, 6066 Google Scholar
Himmler, B. T., Stryjek, R., Modlińska, K., Derksen, S. M., Pisula, W., & Pellis, S. M. (2013). How domestication modulates play behavior: A comparative analysis between wild rats and a laboratory strain of Rattus norvegicus . Journal of Comparative Psychology, 127, 453464.Google Scholar
Himmler, S. M., Lewis, J. M., & Pellis, S. M. (2014). The development of strain typical defensive patterns in the play fighting of laboratory rats. International Journal of Comparative Psychology, 27, 385396.Google Scholar
Himmler, S. M., Himmler, B. T., Pellis, V. C., & Pellis, S. M. (2016). Play, variation in play and the development of socially competent rats. Behaviour, 153, 11031137.Google Scholar
Himmler, S. M., Himmler, B. T., Stryjek, R., Modlińska, K., Pisula, W., & Pellis, S. M. (2016). Pinning in the play fighting of rats: A comparative perspective with some methodological recommendations. International Journal of Comparative Psychology, 29, 114.Google Scholar
Himmler, S. M., Modlińska, K., Stryjek, R., Himmler, B. T., Pisula, W., & Pellis, S. M. (2014). Domestication and diversification: A comparative analysis of the play fighting of the brown Norway, Sprague-Dawley, and Wistar strains of laboratory rats. Journal of Comparative Psychology, 128, 318327.Google Scholar
Hinde, R. A. (1982). Ethology: Its nature and relationship with other sciences. Cambridge: Oxford University Press.Google Scholar
Hogan, J. A. (2001). Development of behavior systems. In Blass, E. M. (Ed.), Handbook of behavioral neurobiology (Vol. 13). Developmental psychobiology (pp. 229279). Cambridge: Springer.Google Scholar
Hole, G. J., & Einon, D. F. (1984). Play in rodents. In Smith, P. K. (Ed.), Play in animals and children (pp. 95117). Cambridge: Blackwell.Google Scholar
Hood, B. M. (2010). The science of superstition. Cambridge: Harper Collins Publishers.Google Scholar
Horrobin, D. F. (1970). Principles of biological control. Cambridge: Medical and Technical Publishing Co., Ltd. Google Scholar
Horwich, R. H. (1972). The ontogeny of social behavior in the gray squirrel (Sciurus carolinensis). Zeitschrift für Tierpsychologie, Supplement no. 8, 1103.Google Scholar
Hough, R. (2001). The final confession of Mabel Stark. Cambridge: Random House Canada.Google Scholar
Hunsperger, R. W. (1983). A neuroethological study of sexual and predatory aggression in the domestic cat. In Ewert, J.-P., Capranica, R. R., & Ingle, D. J. (Eds.), Advances in vertebrate neuroethology (pp. 11511166). Cambridge: Plenum Press.Google Scholar
Huntingford, F. A., & Turner, A. K. (1987). Animal conflict. Cambridge: Chapman & Hall.Google Scholar
Hurst, J. L., Barnard, C. J., Hare, R., Wheeldon, E. B., & West, C. D., (1996). Housing and welfare in laboratory rats: Time-budgeting and pathophysiology in single sex groups. Animal Behaviour, 52, 335360.Google Scholar
Hutchinson, A. (1977). Labanotation: The system of analyzing and recording movement. 3rd edition. Cambridge: Theatre Arts Books.Google Scholar
Huxley, T. H. (1901). The scientific memoirs of Thomas Henry Huxley, Vol. 3. Cambridge: Macmillan.Google Scholar
Inayat, S., Singh, S., Ghasroddaashti, A., Qandeel, , Egodage, P, Whishaw, I. Q., & Mohajerani, M. H. (2020). A Matlab-based toolbox for characterizing behavior of rodents engaged in string-pulling. eLife, 9, e54540 Google Scholar
Ivanco, T. L., Pellis, S. M., & Whishaw, I. Q. (1996). Skilled movements in prey catching and in reaching by rats (Rattus norvegicus) and opossums (Monodelphis domestica): Relations to anatomical differences in motor systems. Behavioural Brain Research, 79, 163182.Google Scholar
Jannett, F. J. Jr. (1981). Scent mediation of intraspecific, interspecific, and intergeneric agonistic behavior among sympatric species of voles (Microtinae). Behavior, Ecology & Sociobiology, 9, 273296.Google Scholar
Johnsgard, P. A. (1965). Handbook of waterfowl behavior. Cambridge: Comstock Publishing Associates.Google Scholar
Jusufi, A., Zeng, Y., Full, R. J., & Dudley, R. (2011). Aerial righting reflexes in flightless animals. Integrative & Comparative Biology, 51, 937943.Google Scholar
Kaas, J. H., Gharbawie, O. A., & Stepniewska, I. (2013). Cortical networks for ethologically relevant behaviors in primates. American Journal of Primatology, 75, 407414.Google Scholar
Kline, R. B. (2013). Beyond significance testing: Statistics reform in the behavioral sciences. 2nd edition. Cambridge: American Psychological Association.Google Scholar
Kolb, B., & Whishaw, I. Q. (2015). Fundamentals of human neuropsychology. 5th edition. Cambridge: Worth Publishing.Google Scholar
Kolb, B., Whishaw, I. Q., & Teskey, G. C. (2019). An introduction to brain and behavior. 6th edition. Cambridge: Worth Publishing.Google Scholar
Kraus, K. L., Pellis, V. C., & Pellis, S. M. (2019). Targets, tactics and cooperation in the play fighting of two genera of Old World Monkeys (Mandrillus and Papio): Accounting for similarities and differences. International Journal of Comparative Psychology, 32, 125.CrossRefGoogle Scholar
Lakke, J. P. W. P. (1985). Axial apraxia in Parkinson’s disease. Journal of Neurological Science, 69, 3746.Google Scholar
Lehner, P. N. (1996). Handbook of ethological methods. 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Lelard, T., Jamon, M., Gasc, J.-P., & Vidal, P.P. (2006). Postural development in rats. Experimental Neurology, 202, 112124.Google Scholar
Leonelli, S. (2019). The challenges of big data biology. eLife, 8, e47381 Google Scholar
Lerwill, C. J., & Makings, P. (1971). The agonistic of behaviour of the golden hamster Mesocricetus auratus (Waterhouse). Animal Behaviour, 19, 714721.Google Scholar
Leyhausen, P. (1979). Cat behavior. The predatory and social behavior of domestic and wild cats. Cambridge: Garland STPM Press.Google Scholar
Lind, H. (1959). The activation of an instinct caused by a “transitional action”. Behaviour, 14, 123135.Google Scholar
Lloyd, G. E. R. (1968). Aristotle: The growth and structure of his thought. Cambridge: Cambridge University Press.Google Scholar
Loewen, I., Wallace, D. G., & Whishaw, I. Q. (2005). The development of spatial capacity in piloting and dead reckoning by infant rats: Use of the huddle as a home base for spatial navigation. Development Psychobiology, 46, 350361.Google Scholar
Logue, D. M., Mishra, S., McCaffrey, D., Ball, D., & Cade, W. H. (2009). A behavioral syndrome linking courtship behavior toward males and females predicts reproductive success from a single mating in the hissing cockroach, Gromphadorhina portentosa . Behavioral Ecology, 20, 781788.Google Scholar
López Pérez, D., Leonardi, G., Niedźwiecka, A., Radkowska, A., Rączaszek-Leonardi, J., & Tomalski, P. (2017). Combining recurrence analysis and automatic movement extraction from video recordings to study behavioral coupling in face-to-face parent-child interactions. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.02228 Google Scholar
Lorenz, K. Z. (1973). The fashionable fallacy of dispensing with description. Naturewissenschaften, 60, 119.Google Scholar
Lyon, P. (2007). From quorum to cooperation: Lessons from bacterial sociality for evolutionary theory. Studies in the History & Philosophy of Science Part C: Studies in the History and Philosophy of Biology & Biomedical Sciences, 38, 820833.Google Scholar
MacDonnell, M. F., & Flynn, J. P. (1966). Sensory control of hypothalamic attack. Animal Behaviour, 14, 399405.Google Scholar
MacNulty, D. R., Mech, L. D., & Smith, D. W. (2007). A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf. Journal of Mammalogy, 88, 595605.Google Scholar
Magnus, R. (1924). Korperstellung. Cambridge: Springer.Google Scholar
Magnus, R. (1926). On the co-operation and interference of reflexes from other sense organs with those of the labyrinths. Laryngoscope, 36, 701713.Google Scholar
Marken, R. S. (2002). Looking at behavior through control theory glasses. Review of General Psychology, 6, 260270.Google Scholar
Markus, E. J., & Petit, T. L. (1987). Neocortical synaptogenesis, aging and behavior: Lifespan development in the motor-sensory system of the rat. Experimental Neurology, 96, 262279.Google Scholar
Martens, D. J., Whishaw, I. Q., Miklyaeva, E. I., & Pellis, S. M. (1996). Spatio-temporal impairments in limb and body movements during righting in an hemiparkinsonian rat analogue: Relevance to axial apraxia in humans. Brain Research, 733, 253262.Google Scholar
Martin, P., & Bateson, P. (2007). Measuring behaviour. An introductory guide. 3rd edition. Cambridge: Cambridge University Press.Google Scholar
Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 10.1038/s41593-018-0209-yGoogle Scholar
May, C. J., & Schank, J. C. (2009). The interaction of body morphology, directional kinematics and environmental structure in the generation of neonatal rat (Rattus norvegicus) locomotor behavior. Ecological Psychology, 21, 308333.Google Scholar
May, C. J., Schank, J. C., & Joshi, S. (2011). Modeling the influence of morphology on the movement ecology of groups of infant rats (Rattus norvegicus) . Adaptive Behavio r, 19, 280-291.Google Scholar
May, C. J., Schank, J. G., Joshi, S., Tran, J., Taylor, R. J., & Scott, I.-E. (2006). Rat pups and random robots generate similar self-organized and intentional behavior. Complexity, 12, 5366.Google Scholar
McFarland, D. J. (1971). Feedback mechanisms in animal behaviour. Cambridge: Academic Press.Google Scholar
Melvin, K. G., Doan, J., Pellis, S. M., Brown, L., Whishaw, I. Q., & Suchowersky, O. (2005). Pallidal deep brain stimulation and L-dopa do not improve qualitative aspects of skilled reaching in Parkinson’s disease. Behavioural Brain Research, 160, 188194.Google Scholar
Meredith, M., & Burghardt, G. M. (1978). Electrophysiological studies of the tongue and accessory olfactory bulb in garter snakes. Physiology & Behavior, 21, 10011008.Google Scholar
Miller, E. H. (1975). Walrus ethology. I. The social role of tusks and applications of multidimensional scaling. Canadian Journal of Zoology, 53, 590613.Google Scholar
Miller, G. F. (1997). Protean primates: The evolution of adaptive unpredictability in competition and courtship. In Whiten, A. & Byrne, R. W. (Eds.), Machiavellian Intelligence II: Extensions and evaluations (pp. 312340). Cambridge: Cambridge University Press.Google Scholar
Mook, D. G. (1996). Motivation. The organization of action. 2nd edition. Cambridge: W. W. Norton & Company.Google Scholar
Moran, G., Fentress, J. C., & Golani, I. (1981). A description of relational patterns of movement during ‘ritualized fighting’ in wolves. Animal Behaviour, 29, 11461165.Google Scholar
Muir, G. D. (2000). Early ontogeny of locomotor behaviour: A comparison between altricial and precocial animals. Brain Research Bulletin, 53, 719726.Google Scholar
Muro, C., Escobedo, R., Spector, L., & Coppinger, R. (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavioral Processes, 88, 192197.Google Scholar
Nelson, J., & Gemmell, R. (2004). Implications of marsupial births for an understanding of behavioural development. International Journal of Comparative Psychology, 17, 5370.Google Scholar
Nevitt, G. A., Losekoot, M., & Weimerskirch, H. (2008). Evidence for olfactory search in wandering albatross, Diomedea exulans . Proceedings of the National Academy of Sciences (USA) , 105, 45764581.Google Scholar
Niedenthal, P. M. (2007). Embodying emotion. Science, 316, 10021005.Google Scholar
Ottenheimer Carrier, L., Leca, J. B., Pellis, S. M., & Vasey, P. L. (2015). A structural comparison of female–male and female–female mounting in Japanese macaques (Macaca fuscata). Behavioural Processes, 119, 7075.Google Scholar
Palagi, E., Cordoni, G., Demuru, E., & Bekoff, M. (2016). Fair play and its connection with social tolerance, reciprocity and the ethology of peace. Behaviour, 153, 11951216.Google Scholar
Panksepp, J. (1981). The ontogeny of play in rats. Developmental Psychobiology, 14, 327332.Google Scholar
Panksepp, J. (1998). Affective neuroscience. Cambridge: Oxford University Press.Google Scholar
Panksepp, J., Normansell, L., Cox, J. F., & Siviy, S. M. (1994). Effects of neonatal decortication on the social play of juvenile rats. Physiology & Behavior, 56, 429443.Google Scholar
Park, R. (2000). Voodoo science: The road from foolishness to fraud. Cambridge: Oxford University Press.Google Scholar
Pellis, S. M. (1981a). Exploration and play in the behavioural development of the Australian magpie Gymnorhina tibicen . Bird Behaviour, 3, 3749.Google Scholar
Pellis, S. M. (1981b). A description of social play by the Australian magpie Gymnorhina tibicen based on Eshkol-Wachman notation. Bird Behaviour, 3, 6179.Google Scholar
Pellis, S. M. (1982). An analysis of courtship and mating in the Cape Barren goose Cereopsis novaehollandiae Latham based on Eshkol-Wachman Movement Notation. Bird Behaviour, 4, 3041.Google Scholar
Pellis, S. M. (1985). What is “fixed” in a Fixed Action Pattern? A problem of methodology. Bird Behaviour, 6, 1015.Google Scholar
Pellis, S. M. (1988). Agonistic versus amicable targets of attack and defense: Consequences for the origin, function and descriptive classification of play-fighting. Aggressive Behavior, 14, 85104.Google Scholar
Pellis, S. M. (1989). Fighting: The problem of selecting appropriate behavior patterns. In Blanchard, R. J., Brain, P. F., Blanchard, D. C. & Parmigiani, S. (Eds.), Ethoexperimental approaches to the study of behavior (pp. 361374). Cambridge: Kluwer Academic Publishers.Google Scholar
Pellis, S. M. (1996). Righting and the modular organization of motor programs. In Ossenkopp, K.-P., Kavaliers, M. & Sanberg, P. R. (Eds.), Measuring movement and locomotion: From invertebrates to humans (pp. 115133). Cambridge: Landes Company.Google Scholar
Pellis, S. M. (1997). Targets and tactics: The analysis of moment-to-moment decision making in animal combat. Aggressive Behavior, 23, 107129.Google Scholar
Pellis, S. M. (2011). Head and foot coordination in head scratching and food manipulation by purple swamp hens (Porphyrio porphyrio): Rules for minimizing the computational costs of combining movements from multiple parts of the body. International Journal of Comparative Psychology, 24, 255271.Google Scholar
Pellis, S. M., & Bell, H. C. (2011). Closing the circle between perceptions and behavior: A cybernetic view of behavior and its consequences for studying motivation and development. Developmental Cognitive Neuroscience, 1, 404413.Google Scholar
Pellis, S. M., & Bell, H. C. (2020). Unraveling the dynamics of dyadic interactions: Perceptual control in animal contests. In Mansell, W. (Ed.), The interdisciplinary handbook of perceptual control theory: Living control systems IV (pp. 7597). Cambridge: Elsevier.Google Scholar
Pellis, S. M., & Iwaniuk, A. N. (2004). Evolving a playful brain: A levels of control approach. International Journal of Comparative Psychology, 17, 90116.Google Scholar
Pellis, S. M., & McKenna, M. M. (1992). Intrinsic and extrinsic influences on play fighting in rats: Effects of dominance, partner’s playfulness, temperament and neonatal exposure to testosterone propionate. Behavioural Brain Research, 50, 135145.Google Scholar
Pellis, S. M., & Officer, R. C. E. (1987). An analysis of some predatory behaviour patterns in four species of carnivorous marsupials (Dasyuridae), with comparative notes on the eutherian cat Felis catus . Ethology, 75, 177196.Google Scholar
Pellis, S. M., & Pellis, V. C. (1982). Do post-hatching factors limit clutch size in the Cape Barren goose (Cereopsis novaehollandiae Latham)? Australian Wildlife Research, 9, 145149.Google Scholar
Pellis, S. M., & Pellis, V. C. (1987). Play-fighting differs from serious fighting in both target of attack and tactics of fighting in the laboratory rat Rattus norvegicus . Aggressive Behavior, 13, 227242.Google Scholar
Pellis, S. M., & Pellis, V. C. (1988a). Play-fighting in the Syrian golden hamster Mesocricetus auratus Waterhouse, and its relationship to serious fighting during post-weaning development. Developmental Psychobiology, 21, 323337.Google Scholar
Pellis, S. M., & Pellis, V. C. (1988b). Identification of the possible origin of the body target which differentiates play-fighting from serious fighting in Syrian golden hamsters Mesocricetus auratus . Aggressive Behavior, 14, 437449.Google Scholar
Pellis, S. M., & Pellis, V. C. (1989). Targets of attack and defense in the play fighting by the Djungarian hamster Phodopus campbelli: Links to fighting and sex. Aggressive Behavior, 15, 217234.Google Scholar
Pellis, S. M., & Pellis, V. C. (1992). Analysis of the targets and tactics of conspecific attack and predatory attack in northern grasshopper mice (Onychomys leucogaster). Aggressive Behavior, 18, 301316.Google Scholar
Pellis, S. M., & Pellis, V. C. (1994). The development of righting when falling from a bipedal standing posture: Evidence for the dissociation of dynamic and static righting reflexes in rats. Physiology & Behavior, 56, 659663.Google Scholar
Pellis, S. M., & Pellis, V. C. (1998). The play fighting of rats in comparative perspective: A schema for neurobehavioral analyses. Neuroscience & Biobehavioral Reviews, 23, 87101.Google Scholar
Pellis, S. M., & Pellis, V. C. (2009). The playful brain. Venturing to the limits of neuroscience. Cambridge: Oneworld Press.Google Scholar
Pellis, S. M., & Pellis, V. C. (2011). To whom the play signal is directed: A study of headshaking in black-handed spider monkeys (Ateles geoffroyi). Journal of Comparative Psychology, 125, 110.Google Scholar
Pellis, S. M., & Pellis, V. C. (2012). Anatomy is important, but need not be destiny: Novel uses of the thumb in aye-ayes compared to other lemurs. Behavioural Brain Research, 231, 378285.Google Scholar
Pellis, S. M., & Pellis, V. C. (2015). Are agonistic behavior patterns signals or combat tactics – or does it matter? Targets as organizing principles of fighting. Physiology & Behavior, 146, 7378.Google Scholar
Pellis, S. M., & Pellis, V. C. (2016). Play fighting in Visayan warty pigs (Sus cebifrons): Insights on restraint and reciprocity in the maintenance of play. Behaviour, 153, 727747.Google Scholar
Pellis, S. M., & Pellis, V. C. (2017). What is play fighting and what is it good for? Learning & Behavior, 45, 355366.Google Scholar
Pellis, S. M., & Pellis, V. C. (2018). “I am going to groom you”: Multiple forms of play fighting in gray mouse lemurs (Microcebus murinus). Journal of Comparative Psychology, 132, 615.Google Scholar
Pellis, S. M., Field, E. F., & Whishaw, I. Q. (1999). The development of a sex-differentiated defensive motor-pattern in rats: A possible role for juvenile experience. Developmental Psychobiology, 35, 156164.Google Scholar
Pellis, S. M., Gray, D., & Cade, W. H. (2009). The judder of the cricket: The variance underlying the invariance in behavior. International Journal of Comparative Psychology, 22, 188205.Google Scholar
Pellis, S. M., Pellis, V. C., & Dewsbury, D. A. (1989). Different levels of complexity in the playfighting by muroid rodents appear to result from different levels of intensity of attack and defense. Aggressive Behavior, 15, 297310.Google Scholar
Pellis, S. M., Pellis, V. C., & Foroud, A. (2005). Play fighting: Aggression, affiliation and the development of nuanced social skills. In Tremblay, R., Hartup, W. W. & Archer, J. (Eds.), Developmental origins of aggression (pp. 4762). Cambridge: Guilford Press.Google Scholar
Pellis, S. M., Pellis, V. C., & Iwaniuk, A. N. (2014). Pattern in behavior: The characterization, origins and evolution of behavior patterns. Advances in the Study of Behavior, 46, 127189.Google Scholar
Pellis, S. M., Pellis, V. C., & McKenna, M. M. (1994). A feminine dimension in the play fighting of rats (Rattus norvegicus) and its defeminization neonatally by androgens. Journal of Comparative Psychology, 108, 6873.Google Scholar
Pellis, S. M., Pellis, V. C., & Nelson, J. E. (1992). The development of righting reflexes in the pouch young of the marsupial Dasyurus hallucatus . Developmental Psychobiology, 25, 105125.Google Scholar
Pellis, S. M., Pellis, V. C., & Teitelbaum, P. (1991). Air-righting without the cervical righting reflex in adult rats. Behavioural Brain Research, 45, 185188.Google Scholar
Pellis, S. M., Pellis, V. C., & Whishaw, I. Q. (1992). The role of the cortex in play fighting by rats: Developmental and evolutionary implications. Brain, Behavior & Evolution, 39, 270284.Google Scholar
Pellis, S. M., Williams, L., & Pellis, V. C. (2017). Adult-juvenile play fighting in rats: Insight into the experiences that facilitate the development of socio-cognitive skills. International Journal of Comparative Psychology, 30, 113.Google Scholar
Pellis, S. M., Burke, C. J., Kisko, T. M., & Euston, D. R. (2018). 50-kHz vocalizations, play and the development of social competence. In Brudzynski, S. (Ed.), Handbook of behavioral neuroscience, Volume 25, Handbook of ultrasonic vocalization. A window in the emotional brain (pp. 117126). Cambridge: Academic Press.Google Scholar
Pellis, S. M., Field, E. F., Smith, L. K., & Pellis, V. C. (1997). Multiple differences in the play fighting of male and female rats. Implications for the causes and functions of play. Neuroscience & Biobehavioral Reviews, 21, 105120.Google Scholar
Pellis, S. M., Pellis, V. C., Manning, C. J., & Dewsbury, D. A. (1992), Supine defense in intraspecific fighting of male house mice Mus domesticus . Aggressive Behavior, 18, 373379.Google Scholar
Pellis, S. M., Pellis, V. C., Pierce, J. D. Jr., & Dewsbury, D A. (1992). Disentangling the contribution of the attacker from that of the defender in the differences in the intraspecific fighting of two species of voles. Aggressive Behavior, 18, 425435.Google Scholar
Pellis, S. M., Pellis, V. C., Chen, Y.-C., Barzci, S., & Teitelbaum, P. (1989). Recovery from axial apraxia in the lateral hypothalamic labyrinthectomized rat reveals three elements of contact-righting: Cephalic dominance, axial rotation, and distal limb action. Behavioural Brain Research, 35, 241251.Google Scholar
Pellis, S. M., Pellis, V. C., Chesire, R. M., Rowland, N. E., & Teitelbaum, P. (1987). Abnormal gait sequence in the locomotion released by atropine in catecholamine deficient akinetic rats. Proceedings of the National Academy of Science (USA) , 84, 87508753.Google Scholar
Pellis, S. M., Blundell, M. A., Bell, H. C., Pellis, V. C., Krakauer, A. H., & Patricelli, G. L. (2013). Drawn into the vortex: The facing-past encounter and combat in lekking male greater sage-grouse (Centrocercus urophasianus). Behaviour, 150, 15671599.Google Scholar
Pellis, S. M., McKenna, M. M., Field, E. F., Pellis, V. C., Prusky, G. T., & Whishaw, I. Q. (1996). Uses of vision by rats in play fighting and other close quarter social interactions. Physiology & Behavior, 59, 905913.Google Scholar
Pellis, S. M., Pellis, V. C., Himmler, B. T., Modlińska, K., Stryjek, R., Kolb, B., & Pisula, W. (2019). Domestication and the role of social play on the development of socio-cognitive skills in rats. International Journal of Comparative Psychology, 32, 112.Google Scholar
Pellis, V. C., Pellis, S. M., & Teitelbaum, P. (1991). A descriptive analysis of the post-natal development of contact-righting in rats (Rattus norvegicus). Developmental Psychobiology, 24, 237263.Google Scholar
Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389443.Google Scholar
Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man. A clinical study of localization of function. Cambridge: Macmillan.Google Scholar
Petri, H. L., & Govern, J. M. (2004). Motivation. Theory, research, and applications. Cambridge: Wadsworth.Google Scholar
Pfeifer, R., & Bongard, J. (2007). How the body shapes the way we think. Cambridge: MIT Press.Google Scholar
Pierce, J. D. Jr., Pellis, V. C., Dewsbury, D. A., & Pellis, S. M. (1991). Targets and tactics of agonistic and precopulatory behavior in montane and prairie voles: Their relationship to juvenile play fighting. Aggressive Behavior , 17, 337349.Google Scholar
Poletaeva, I., & Zorina, Z. (2015). Extrapolation ability in animals and its possible links to exploration, anxiety, and novelty seeking. In Nadin, M. (Ed.), Learning from the past (pp. 415430). Cambridge: Springer.Google Scholar
Powers, W. T. (2005). Behavior: The control of perception. 2nd edition. Cambridge: Benchmark Publications.Google Scholar
Powers, W. T. (2009). Living control systems: The fact of control. Cambridge: Benchmark Publications.Google Scholar
Railsback, S. F., & Grimm, V. (2011). Agent-based and individual based modeling: A practical guide. Cambridge: Princeton University Press.Google Scholar
Reinhart, C. J., McIntyre, D. C., & Pellis, S. M. (2004). The development of play fighting in kindling-prone (FAST) and kindling-resistant (SLOW) rats: How does the retention of phenotypic juvenility affect the complexity of play? Developmental Psychobiology, 45, 8392.Google Scholar
Reinhart, C. J., McIntyre, D. C., Metz, G. A., & Pellis, S. M. (2006). Play fighting between kindling-prone (fast) and kindling-resistant (slow) rats. Journal of Comparative Psychology, 120, 1930.Google Scholar
Roberto, M. E., & Brumley, M. R. (2014). Prematurely delivered rats show improved motor coordination during sensory-evoked motor responses compared to age-matched controls. Physiology & Behavior, 130, 7584.Google Scholar
Ronca, A. E., & Alberts, J. R. (2000). Effects of prenatal spaceflight on vestibular responses of neonatal rats. Journal of Applied Physiology, 89, 23182324.Google Scholar
Rychlowska, M., Cañadas, E., Wood, A., Krumhuber, E. G., Fischer, A., & Niedenthal, P. M. (2014). Blocking mimicry makes true and false smiles look the same. PLoS ONE, 9(3), e90876. doi:10.1371/journal.pone.0090876 Google Scholar
Sandhu, S., Gulrez, T., & Mansell, W. (2020). Behavioral anatomy of a hunt: Using dynamic real-world paradigm and computer vision to compare human user-generated strategies with prey movement varying in predictability. Attention, Perception & Psychophysics, 82, 31123123 Google Scholar
Schank, J. C., & Alberts, J. R. (1997). Self-organized huddles of rat pups modeled by simple rules of individual behavior. Journal of Theoretical Biology, 189, 1125.Google Scholar
Schank, J. C., May, C. J., Tran, J. T., & Joshi, S. S. (2004). A biorobotic investigation of Norway rat pups (Rattus norvegicus) in an arena. Adaptive Behavior, 12, 161173.Google Scholar
Sherrington, C. S. (1906). The integrative action of the nervous system. Cambridge: Scribner’s.Google Scholar
Sherwood, L., & Ward, C. (2018). Human physiology: From cells to systems. Cambridge: Nelson Education.Google Scholar
Siegel, H. I. (1985). Male sexual behavior. In Siegel, H. I. (Ed.), The hamster. Reproduction and behavior (pp. 191206). Cambridge: Plenum Press.Google Scholar
Silverman, P. (1978). Animal behaviour in the laboratory. Cambridge: Pica Press.Google Scholar
Sinnamon, H. M. (1993). Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Progress in Neurobiology, 141, 323–44.Google Scholar
Siviy, S. M. (2016). A brain motivated to play: Insights into the neurobiology of playfulness. Behaviour, 153, 819844.Google Scholar
Siviy, S. M., & Panksepp, J. (1987). Sensory modulation of juvenile play in rats. Developmental Psychobiology, 20, 3955.Google Scholar
Siviy, S. M., Baliko, C. N., & Bowers, K. S. (1997). Rough-and-tumble play behavior in Fischer-344 and Buffalo rats: Effects of social isolation. Physiology & Behavior, 61, 597602.Google Scholar
Siviy, S. M., Crawford, C. A., Akopian, G., & Walsh, J. P. (2011). Dysfunctional play and dopamine physiology in the Fisher 344 rat. Behavioural Brain Research, 220, 294304.Google Scholar
Siviy, S. M., Love, N. J., DeCicco, B. M., Giordano, S. B., & Seifert, T. L. (2003). The relative playfulness of juvenile Lewis and Fischer-344 rats. Physiolology & Behavior, 80, 385394.Google Scholar
Skinner, B. F. (1938). The behavior of organisms. Cambridge: Appleton Century Crofts.Google Scholar
Smith, P. K. (1997). Play fighting and real fighting. Perspectives on their relationship. In Schmitt, A., Atzwanger, K., Grammar, K., & Schäfer, K. (Eds.), New aspects of human ethology (pp. 4764). Cambridge: Plenum Press.Google Scholar
Staddon, J. E. R. (2016). Adaptive behavior and learning. 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Stark, R. A., Harker, A., Salamanca, S., Pellis, S. M., Li, F., & Gibb, R. L. (2020). Development of ultrasonic calls in rat pups follows similar patterns regardless of isolation distress. Developmental Psychobiology, 62, 617630.Google Scholar
Strack, F., Martin, L. L., & Stepper, S. (1988). Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. Journal of Personality & Social Psychology, 54, 768777.Google Scholar
Suomi, S. J. (2005). Genetic and environmental factors influencing the expression of impulsive aggression and serotonergic functioning in rhesus monkeys. In Tremblay, R. E., Hartup, W. W. & Archer, J. (Eds.), Developmental origins of aggression (pp. 6382). Cambridge: Guilford Press.Google Scholar
Szechtman, H., Ornstein, K., Teitelbaum, P., & Golani, I. (1985). The morphogenesis of stereotyped behavior induced by the dopamine receptor agonist apomorphine in the laboratory rat. Neuroscience, 14, 783798.Google Scholar
Taylor, G. T. (1980). Fighting in juvenile rats and the ontogeny of agonistic behavior. Journal of Comparative & Physiological Psychology, 94, 953961.Google Scholar
Teitelbaum, P. (1982). Disconnection and antagonistic interaction of movement subsystems in motivated behavior. In Morrison, A. R. & Strick, A. L. (Eds.), Changing concepts of the nervous system: Proceedings of the first institute of neurological sciences symposium in neurobiology (pp. 467487). Cambridge: Academic Press.Google Scholar
Teitelbaum, P. (2012). Some useful insights for graduate students beginning their research in physiological psychology: Anecdotes and attitudes. Behavioural Brain Research, 231, 234249.Google Scholar
Teitelbaum, P., Cheng, M.-F., & Rozin, P. (1969). Development of feeding parallels its recovery after hypothalamic damage. Journal of Comparative & Physiological Psychology, 67, 430441.Google Scholar
Teitelbaum, P., Schallert, T., & Whishaw, I. Q. (1983). Sources of spontaneity in motivated behavior. In Satinoff, E. & Teitelbaum, P. (Eds.), Motivation (pp. 2366). Cambridge: Springer.Google Scholar
Teitelbaum, P., Wolgin, D. L., De Ryck, M., & Marin, O. S. (1976). Bandage-backfall reaction: Occurs in infancy, hypothalamic damage, and catalepsy. Proceedings of the National Academy of Science, USA , 73, 33113314.Google Scholar
Thelen, E. (1995). Motor development. A new synthesis. American Psychologist, 50, 7995.Google Scholar
Thor, D. H., & Flannelly, K. J. (1978). Sex-eliciting behavior of the female rat: Discrimination of receptivity by anosmic and intact males. Behavioral Biology, 23, 326340.Google Scholar
Thor, D. H., & Holloway, W. R. Jr. (1986). Social play soliciting by male and female juvenile rats: Effects of neonatal androgenization and sex of cagemates. Behavioral Neuroscience, 100, 275279.Google Scholar
Tilney, F. (1933). Behavior in its relation to the development of the brain: Part II. Correlation between the development of the brain and behavior in the albino rat from embryonic states to maturity. Bulletin of the Neurology Institute of New York, 3, 252258.Google Scholar
Timberlake, W. (2001). Motivational modes in behavior systems. In Mowrer, R. R. & Klein, S. B. (Eds.), Handbook of contemporary learning theories (pp. 155210). Cambridge: Erlbaum.Google Scholar
Tinbergen, N. (1951). The study of instinct. Cambridge: Clarendon Press.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsycholgie, 20, 410433.Google Scholar
Tinbergen, N., & Lorenz, K. (1938). Taxis und Instinkthandlung in der Eirollbewegung der Graugans. Zeitschrift für Tierpsycholgie, 2, 129.Google Scholar
Tomkiewicz, S. M., Fuller, M. R., Kie, J. G. & Bates, K. K. (2010). Global positioning system and associated technologies in animal behaviour and ecological research. Philosophical Transactions of the Royal Society B , 365, 21632176.Google Scholar
Troiani, D., Petrosini, L., & Passani, F. (1981). Trigeminal contribution to the head righting reflex. Physiology & Behavior, 37, 157160.Google Scholar
Turner, J. S. (2007). The tinkerer’s accomplice. How design emerges from life itself. Cambridge: Harvard University Press.Google Scholar
Vanderschuren, L. J. M. J., Achterberg, E. J. M., & Trezza, V. (2016). The neurobiology of social play and its rewarding value in rats. Neuroscience & Biobehavioral Reviews, 70, 86105.Google Scholar
Vasey, P. L., Foroud, A., Duckworth, N., & Kovacovsky, S. D. (2006). Male–female and female–female mounting in Japanese macaques: A comparative study of posture and movement. Archives of Sexual Behavior, 35, 116128.Google Scholar
Vergara-Aragon, P., Gonzalez, C. L. R., & Whishaw, I. Q. (2003). A novel skilled-reaching impairment in paw supination on the “good” side of the hemi-Parkinson rat improves with rehabilitation. The Journal of Neuroscience, 23, 579586.Google Scholar
Von Holst, E. (1973). The behavioral physiology of animals and man (trans. Martin, R.). Cambridge: University of Miami Press.Google Scholar
Von Uexküll, J. (1934/2010). A foray into the worlds of animals and humans. Translated by J. D. O’Neil and reprinted by the University of Minnesota Press: Minneapolis, MN.Google Scholar
Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1, 848858.Google Scholar
Wainwright, P. C., Mehta, R. S., & Higham, T. E. (2008). Stereotypy, flexibility and coordination: Key concepts in behavioral functional morphology. Journal of Experimental Biology, 211, 35233528.Google Scholar
Wallace, D. G., Choudhry, S., & Martin, M. N. (2006). Comparative analysis of movement characteristics during dead-reckoning-based navigation in humans and rats. Journal of Comparative Psychology, 120, 331344.Google Scholar
Wallace, D. G., Hines, D. J., Pellis, S. M., & Whishaw, I. Q. (2002). Vestibular information is required for dead reckoning in the rat. Journal of Neuroscience, 22, 1000910017.Google Scholar
Walther, F. R. (1984). Communication and expression in hoofed mammals. Cambridge: Indiana University Press.Google Scholar
Walton, K. D., Harding, S., Anschel, D., Harris, Y. T., & Llinás, R. (2005). The effects of microgravity on the development of surface righting in rats. Journal of Physiology, 565, 593608.Google Scholar
Waterman, J. M. (2010). The adaptive function of masturbation in a promiscuous African ground squirrel. PLoS ONE, 5(9), e13060. doi:10.1371/journal.pone.0013060 Google Scholar
Webb, B. (2001). Can robots make good models of biological behavior? Behavioral & Brain Sciences, 24, 10331050.Google Scholar
Webb, B., & Consi, T. R. (2001). Biorobotics: Methods and applications. Cambridge: American Association for Artificial Intelligence.Google Scholar
Whishaw, I. Q. (1988). Food wrenching and dodging: Use of action patterns for the analysis of sensorimotor and social behavior in the rat. Journal of Neuroscience Methods, 24, 169178.Google Scholar
Whishaw, I. Q., & Gorny, B. (1994a). Arpeggio and fractionated digit movements used in prehension by rats. Behavioural Brain Research, 60, 1524.Google Scholar
Whishaw, I. Q., & Gorny, B. (1994b). Food wrenching and dodging: Eating time estimates influence dodge probability and amplitude. Aggressive Behavior, 20, 3547.Google Scholar
Whishaw, I. Q., & Kolb, B. (1985). The mating movements of male decorticate rats: Evidence for subcortically generated movements by the male but regulation of approaches by the female. Behavioural Brain Research, 17, 171191.Google Scholar
Whishaw, I. Q., & Miklyaeva, E. I. (1996). A rat’s reach should exceed its grasp: Analysis of independent limb and digit use in the laboratory rat. In Ossenkopp, P.-K., Kavaliers, M. & Sanburg, P. R. (Eds.), Measuring movement and locomotion: From invertebrates to humans (pp. 135169). Cambridge: Landes.Google Scholar
Whishaw, I. Q., & Pellis, S. M. (1990). The structure of skilled forelimb reaching in the rat: A proximally driven stereotyped movement with a single rotatory component. Behavioural Brain Research, 41, 4959.Google Scholar
Whishaw, I. Q., Cassel, J.-C., & Jarrard, L. E. (1995). Rats with fimbria-fornix lesions display a place response in a swimming pool: A dissociation between getting there and knowing where. The Journal of Neuroscience, 15, 57795788.Google Scholar
Whishaw, I. Q., Dringenberg, H. C., & Pellis, S. M. (1992). Forelimb use in free feeding by rats: Motor cortex aids limb and digit positioning. Behavioural Brain Research, 48: 113125.Google Scholar
Whishaw, I. Q., O’Connor, W. T., & Dunnett, S. B. (1986). The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain, 109, 805843.Google Scholar
Whishaw, I. Q., Pellis, S. M., & Gorny, B. P. (1992a). Medial frontal cortex lesions impair the aiming component of rat reaching. Behavioural Brain Research, 50, 93104.Google Scholar
Whishaw, I. Q., Pellis, S. M., & Gorny, B. P. (1992b). Skilled reaching in rats and humans: Evidence for parallel development or homology. Behavioural Brain Research, 47, 5970.Google Scholar
Whishaw, I. Q., Pellis, S. M., & Pellis, V. C. (1992). A behavioral study of the contributions of cells and fibers of passage in the red nucleus of the rat to postural righting, skilled movements, and learning. Behavioural Brain Research, 52, 2944.Google Scholar
Whishaw, I. Q., Sarna, J., & Pellis, S. M. (1998). Evidence for rodent-common and species-typical limb and digit use in eating derived from a comparative analysis of ten rodent species. Behavioural Brain Research, 96, 7991.Google Scholar
Whishaw, I. Q., Whishaw, P., & Gorny, B. (2008). The structure of skilled forelimb reaching in the rat: A movement rating scale. Journal of Visual Experiments, 18, e816. doi:10.3791/816.Google Scholar
Whishaw, I. Q., Pellis, S. M., Gorny, B. P., & Pellis, V. C. (1991). The impairments in reaching and the movements of compensation in rats with motor cortex lesions: A videorecording and movement notation analysis. Behavioural Brain Research, 42, 7791.Google Scholar
Whishaw, I. Q., Suchowersky, O., Davis, L., Sarna, J., Metz, G. A., & Pellis, S. M. (2002). A qualitative analysis of reaching-to-grasp movements in human Parkinson’s disease (PD) reveals impairments in coordination and rotational movements of pronation and supination: A comparison to deficits in animal models of PD. Behavioural Brain Research, 133, 165176.Google Scholar
Wiley, R. H. (1973). The strut display of male sage grouse – a ‘fixed’ action pattern. Behaviour, 47, 129152.Google Scholar
Wilmer, A. H. (1991). Behavioral deficiencies of aggressive 8–9-year-old boys: An observational study. Aggressive Behavior, 17, 135154.Google Scholar
Windle, W. F., & Fish, M. W. (1932). The development of the vestibular righting reflex in the cat. Journal of Comparative Neurology, 54, 8596.Google Scholar
Wright, J. M., Gourdon, J. M., & Clarke, P. B. (2010). Identification of multiple call categories within the rich repertoire of adult rat 50-kHz ultrasonic vocalizations: Effects of amphetamine and social context. Psychopharmacology, 211, 113.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sergio Pellis, University of Lethbridge, Alberta, Vivien Pellis, University of Lethbridge, Alberta
  • Book: Understanding Animal Behaviour
  • Online publication: 11 May 2021
  • Chapter DOI: https://doi.org/10.1017/9781108650151.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sergio Pellis, University of Lethbridge, Alberta, Vivien Pellis, University of Lethbridge, Alberta
  • Book: Understanding Animal Behaviour
  • Online publication: 11 May 2021
  • Chapter DOI: https://doi.org/10.1017/9781108650151.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sergio Pellis, University of Lethbridge, Alberta, Vivien Pellis, University of Lethbridge, Alberta
  • Book: Understanding Animal Behaviour
  • Online publication: 11 May 2021
  • Chapter DOI: https://doi.org/10.1017/9781108650151.011
Available formats
×