Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:29:28.106Z Has data issue: true hasContentIssue false

References

Published online by Cambridge University Press:  24 October 2024

Patrick Dewilde
Affiliation:
Technische Universität München
Klaus Diepold
Affiliation:
Technische Universität München
Alle-Jan Van der Veen
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Time-Variant and Quasi-separable Systems
Matrix Theory, Recursions and Computations
, pp. 300 - 303
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adamjan, V. M., Arov, D. Z., and Krein, M. G.. Analytic properties of Schmidt pairs for a Hankel operator and the Schur–Takagi problem. Math. USSR Sbornik, 15(1):3173, 1971.Google Scholar
[2]Alpay, D., Dewilde, P., and Volok, D.. Interpolation and approximation of quasiseparable systems: the Schur–Takagi case. Calcolo, 42:139–156, 2005.Google Scholar
[3]Anderson, B. D. O. and Moore, J. B.. Optimal Filtering. Prentice Hall, Englewood Cliffs, NJ, 1979.Google Scholar
[4]Anderson, B. D. O. and Moore, J. B.. Optimal Control, Linear Quadratic Methods. Prentice Hall, Englewood Cliffs, NJ, 1989.Google Scholar
[5]Anderson, B. D. O. and Vongpanitlerd, S.. Network Analysis and Synthesis. Prentice Hall, Englewood Cliffs, NJ, 1973.Google Scholar
[6]Anneveling, J. and Dewilde, P.. Object-oriented data management based on abstract data types. Softw. Pract. Exp., 17(11):751–781, November 1987.Google Scholar
[7]Arveson, W.. Interpolation problems in nest algebras. J. Funct. Anal., 20(3):208–233, 1975.Google Scholar
[8]Ball, J. A. and Helton, J. W.. A Beurling-Lax theorem for the Lie group U (m, n) which contains most classical interpolation theory. J. Oper. Theory, 9(2):107142, 1983.Google Scholar
[9]Ball, J. A. and Helton, J. W.. Inner-outer factorization of nonlinear operators. J. Funct. Anal., 104(2):363–413, 1992.Google Scholar
[10]Bart, H., Gohberg, I., and Kaashoek, M. A.. Convolution equations and linear systems. Integr. Equ. Oper. Theory, 5(3):283–340, 1982.Google Scholar
[11]Belevitch, V.. Classical Network Theory. Holden Day, San Francisco, CA, 1968.Google Scholar
[12]Belevitch, V.. Elementary applications of the scattering formalism to network design. IRE Trans. Circuit Theory, 3(2):97–104, 1956.Google Scholar
[13]Bellman, R.. The theory of dynamic programming. Bull. Am. Math. Soc., 60(6):503–516, 1954.Google Scholar
[14]Ben-Artzi, A. and Gohberg, I.. Nonstationary inertia theorems, dichotomy and applications. Proc. Sympos. Pure Math., 51(Part 1):8595, 1990.Google Scholar
[15]Bu, J.. Systematic Design of Regular VLSI Processor Arrays. PhD thesis, Delft University of Technology, Delft, the Netherlands, May 1990.Google Scholar
[16]Chandrasekaran, S., Dewilde, P., Gu, M., Pals, T., Sun, X., van der Veen, A. J., and White, D.. Some fast algorithms for sequentially semi-separable representations. SIAM J. Matrix Anal. Appl., 27(2):341–364, 2005.Google Scholar
[17]Cover, Th. M. and Thomas, J. A.. Elements of Information Theory. John Wiley & Sons, Inc., New York, 1991.Google Scholar
[18]Cybenko, G.. A general orthogonalization technique with applications to time series analysis and signal processing. Math. Comput., 40(161):323–336, 1983.Google Scholar
[19]Dale, W. N. and Smith, M. C.. Existence of coprime factorizations for time-varying systems – an operator-theoretic approach. In Kimura, H. and Kodama, S., editors, Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing I (Proc. Int. Symp. MTNS-91), pages 177–182. MITA Press, Japan, 1992.Google Scholar
[20]Castriota, L. J., Youla, D. C., and Carlin, H. J.. Bounded real scattering matrices and the foundation of linear passive network theory. IRE Trans. Circuit Theory, 4(1):102–124, 1959. Corrections, Ibid., 317 (September 1959).Google Scholar
[21]de Lange, A. A. J., van der Hoeven, A. J., Deprettere, E. F., and Dewilde, P.. HiFi: an object oriented system for the structural synthesis of signal processing algorithms and the VLSI compilation of signal flow graphs. In Claesen, L., editor, Applied Formal Methods for Correct VLSI Design, pages 462481. IFIP, 1989.Google Scholar
[22]Deprettere, E.. Mixed-form time-variant lattice recursions. In Outils et Modèles Mathématiques pour l’Automatique, l’Analyse de Systèmes et le Traitement du Signal, CNRS, Paris, 1981.Google Scholar
[23]Deprettere, E. and van der Veen, A. J.. Algorithms and Parallel VLSI Architectures. Elsevier, Amsterdam, 1991.Google Scholar
[24]Van der Veen, A.-J.. A Schur method for low-rank matrix approximation. SIAM J. Matrix Anal. Appl., 17(1):139–160, 1996.Google Scholar
[25]Dewilde, P.. On the LU factorization of infinite systems of semi-separable equations. Indagationes Math., 23:1028–1052, 2012.Google Scholar
[26]Dewilde, P.. Generalized Darlington synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 45(1):41–58, January 1999.Google Scholar
[27]Dewilde, P. and Deprettere, E.. Approximative inversion of positive matrices with applications to modeling. In Curtain, R. F., editor, NATO ASI Series, Vol. F34 of Modeling, Robustness and Sensitivity Reduction in Control Systems, pages 211–238. Springer Verlag, Berlin, 1987.Google Scholar
[28]Dewilde, P., Eidelman, Y., and Haimovici, I.. LU factorization for matrices in quasiseparable form via orthogonal transformations. Linear Algebr. Appl., 502:5–40, 2016.Google Scholar
[29]Dewilde, P. and van der Veen, A.-J.. Time-Varying Systems and Computations. Kluwer, Dordrecht, 1998. [Out of print but freely available at ens.ewi.tudelft.nl.]Google Scholar
[30]Dewilde, P. and van der Veen, A.-J.. Inner-outer factorization and the inversion of locally finite systems of equations. Linear Algebr. Appl., 313:53–100, 2000.Google Scholar
[31]Dewilde, P. M.. A course on the algebraic Schur and Nevanlinna-Pick interpolation problems. In Deprettere, F. and van der Veen, A. J., editors, Algorithms and Parallel VLSI Architectures. Elsevier, Amsterdam, 1991.Google Scholar
[32]Dewilde, P. M. and van der Veen, A. J.. On the Hankel-norm approximation of uppertriangular operators and matrices. Integr. Equ. Oper. Theory, 17(1):1–45, 1993.Google Scholar
[33]Van Dooren, P.. A unitary method for deadbeat control. In Fuhrmann, P. A., editor, Mathematical Theory of Networks and Systems. Lecture Notes in Control and Information Sciences, vol 58. Springer, Berlin, Heidelberg, 1984.Google Scholar
[34]Van Dooren, P.. Deadbeat control, a special inverse eigenvalue problem. BIT, 24:681–699, 1984.Google Scholar
[35]Dym, H. and Gohberg, I.. Extensions of band matrices with band inverses. Linear Algebr. Appl., 36:1–24, 1981.Google Scholar
[36]Eidelman, Y. and Gohberg, I.. On a new class of structured matrices. Integr. Equ. Oper. Theory, 34(3):293–324, 1999.Google Scholar
[37]Eidelman, Y. and Gohberg, I.. A modification of the Dewilde-van der Veen method for inversion of finite structured matrices. Linear Algebr. Appl., 343–344:419–450, 2002.Google Scholar
[38]Feldman, I. A. and Gohberg, I.. On reduction method for systems of Wiener–Hopf type. Dokl. Akad. Nauk SSSR, 165(2):268–271, 1965.Google Scholar
[39]Frazho, A. E. and Kaashoek, M. A.. Canonical factorization of rational matrix functions. a note on a paper by P. Dewilde. Indag. Math., 23:1154–1164, 2012.Google Scholar
[40]Golub, G. H. and Van Loan, Ch. F.. Matrix Computations. John Hopkins University Press, Baltimore, MD, 1983.Google Scholar
[41]Hautus, L. M. J.. A simple proof of Heymann's lemma. IEEE Trans. Autom. Control, 22(5):885–886, 1977.Google Scholar
[42]Helson, H.. Lectures on Invariant Subspaces. Academic Press, New York, 1964.Google Scholar
[43]Helton, J. W.. Orbit structure of the Möbius transformation semigroup acting on H∞ (broadband matching). In Topics in Functional Analysis, volume 3 of Advances in Mathematics: Supplementary Studies, pages 129–133. Academic Press, New York, 1978.Google Scholar
[44]Ho, B. L. and Kalman, R. E.. Effective construction of linear, state-variable models from input/output functions. Regelungstechnik, 14(1–12):545–548, 1966.Google Scholar
[45]Jainandunsing, K. and Deprettere, E. F.. A new class of parallel algorithms for solving, systems of linear equations. SIAM J. Sci. Stat. Comput., 10(5):880–912, 1989.Google Scholar
[46]Kailath, T.. Lectures on Linear Least-Squares Estimation. Springer Verlag, CISM Courses and Lectures No. 140, Wien, New York, 1976.Google Scholar
[47]Kailath, T.. A view of three decades of linear filtering theory. IEEE Trans. Inform. Theory, 20(2):145–181, 1974.Google Scholar
[48]Kalman, R. E.. A new approach to linear filtering and prediction problems. J. Basic Eng., 82(1):34–45, 1960.Google Scholar
[49]Kalman, R. E., Falb, P. L., and Arbib, M. A.. Topics in Mathematical System Theory. International Series in Pure and Applied Mathematics. McGraw-Hill, New York, 1970.Google Scholar
[50]Luenberger, David G.. Introduction to Dynamic Systems. John Wiley & Sons, 1979.Google Scholar
[51]De Micheli, G.. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York, 1994.Google Scholar
[52]Morf, M. and Kailath, T.. Square-root algorithms for least-squares estimation. IEEE Trans. Autom. Control, 20(4):487–497, 1975.Google Scholar
[53]Nelis, H., Dewilde, P., and Deprettere, E. F.. Inversion of partially specified positive definite matrices by inverse scattering. Ope. Theory: Adv. Appl., 40:325–357, 1989.Google Scholar
[54]Masani, P. P and N. Wiener. The prediction theory of multivariable stochastic processes. Acta Math., 98 and 99:111–150 and 93–137, 1957 and 1958.Google Scholar
[55]Van Barel, M. Vandebril, R. and Mastronardi, N.. Matrix Computations and Semiseparable Matrices. John Hopkins University Press, Baltimore, MD, 2008.Google Scholar
[56]Rice, J. K. and Verhaegen, M.. Distributed control: a sequentially semi-separable approach for spatially heterogeneous linear sysems. IEEE Trans. Autom. Control, 54(6):1270–1284, 2009.Google Scholar
[57]The New Oxford American Dictionary. [Edition available as application on macOS Mojave.]Google Scholar
[58]John., R. Ringrose. On some algebras of operators. Proc. Lond. Math. Soc., 15(1):61–83, 1965.Google Scholar
[59]Rudin, W.. Real and Complex Analysis. McGraw-Hill, New York, 1966.Google Scholar
[60]Van Dooren, P. M., Patel, R. V., and Laub, A. J.. Numerical Linear Algebra Techniques for Systems and Control. IEEE Press, New York, 1994.Google Scholar
[61]Schur, I.. Uber Potenzreihen, die im Innern des Einheitskreises beschränkt sind, I. J. Reine Angew. Math., 147:205–232, 1917. Eng. Transl. Oper. Theory: Adv. Appl., 18:31–59, 1986.Google Scholar
[62]Silverman, L. M. and Meadows, H. E.. Equivalence and synthesis of time-variable linear systems. In Proceedings of 4th Allerton Conference on Circuit and System Theory, pages 776–784, 1966.Google Scholar
[63]Stewart, G. W.. Matrix Algorithms. SIAM, Philadelphia, PA, 1998.Google Scholar
[64]Stewart, G. W.. Matrix Algorithms, Vol. I: Basic Decompositions. SIAM, Philadelphia, PA, 1998.Google Scholar
[65]Stewart, G. W.. Matrix Algorithms, Vol. II: Eigensystems. SIAM, Philadelphia, PA, 2001.Google Scholar
[66]Takagi, Teiji. On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau. Japan J. Math., 1:83–93, 1924.Google Scholar
[67]van der Meijs, N. P.. Accurate and efficient layout extraction. PhD thesis, Delft University of Technology, The Netherlands, 1992.Google Scholar
[68]Arjan van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control. Springer, New York, 2000.Google Scholar
[69]van der Veen, A. J.. Time-varying system theory and computational modeling: realization, approximation, and factorization. PhD thesis, Delft University of Technology, Delft, The Netherlands, June 1993.Google Scholar
[70]van der Veen, A. J. and Dewilde, P. M.. On low-complexity approximation of matrices. Linear Algebr. Appl., 205/206:1145–1201, 1994.Google Scholar
[71]Verhaegen, M.. Subspace model identification. Part III: Analysis of the ordinary outputerror state space model identification algorithm. Int. J. Control, 58(3):555–586, 1994.Google Scholar
[72]Verhaegen, M. and Dewilde, P.. Subspace model identification. Part I: The output-error state space model identification class of algorithms. Int. J. Control, 56(5):1187–1210, 1992.Google Scholar
[73]Verhaegen, M. and Dewilde, P.. Subspace model identification. Part II: Analysis of the elementary output-error state space model identification algorithm. Int. J. Control, 56(5):1211–1241, 1992.Google Scholar
[74]Wilkinson, J. H. and Reinsch, C.. Linear Algebra, vol. 2, Handbook for Automatic Computation. Springer, New York, 1971.Google Scholar
[75]Willems, Jan. The behavioral approach to open and interconnected systems. IEEE Control Syst. Mag., 27(6):46–99, 2007.Google Scholar
[76]Willems, J. C.. Dissipative dynamical systems – part i: general theory. Arch. Ration. Mech. Anal., 45:321–351, 1972.Google Scholar
[77]Mu Zhou and Alle-Jan van der Veen. Stable subspace tracking algorithm based on signed URV decomposition. In Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing, pages 2720–2723, Prague, Czech Republic, May 2011.Google Scholar
[78]Dehn, Max. Über die Zerlengung von Rechtecken in Rechtecke. Math. Ann. 57:314–322, 1903.Google Scholar
[79]Bouwkamp, C. J., Duijvestijn, A. J. W., and Medema, P.. Table of c-nets of orders 8–19 inclusive, 2 vols. Philips Research Laboratories, Eindhoven, The Netherlands, 1960; Unpublished available in UMT file of Mathematics of Computation.Google Scholar
[80]Duijvestijn, A. J. W.. Simple perfect square of lowest order. J. Comb. Theory. Ser. B. (25):240–243, 1978.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×