Published online by Cambridge University Press: 21 April 2022
The objective of this chapter is to review the Taylor series expansion and discuss its usage in error estimation. The unique value of Taylor series expansion is often neglected. The major assumption is that a function must be infinitely differentiable to use the Taylor series expansion. In real applications in oceanography, however, hardly there is a need to worry about a derivative higher than the 3rd order, although one may think of some exceptions. The point is, there is rarely a need in oceanography and other environmental sciences to actually consider calculating a very high order derivative, unless for theoretical investigations or under special situations. So the application of Taylor series expansion usually only involves the first two derivatives. In this chapter, some simple examples are included for a better understanding of the applications.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.