Published online by Cambridge University Press: 06 January 2010
In this chapter I propose, as indicated in the Introduction, to explain in a particular case the nature of the phenomenon that led Kummer to the creation of ideal numbers, and I shall use the same example to explain the concept of ideal introduced by myself, and that of the multiplication of ideals.
The rational integers
The theory of numbers is at first concerned exclusively with the system of rational integers 0, ±1,±2, ± 3, …, and it will be worthwhile to recall in a few words the important laws that govern this domain. Above all, it should be recalled that these numbers are closed under addition, subtraction and multiplication, that is, the sum, difference and product of any two members in this domain also belong to the domain. The theory of divisibility considers the combination of numbers under multiplication. The number a is said to be divisible by the number b when a = bc, where c is also a rational integer. The number 0 is divisible by any number; the two units ±1 divide all numbers, and they are the only numbers that enjoy this property. If a is divisible by b, then ±a will also be divisible by ±b, and consequently we can restrict ourselves to the consideration of positive numbers. Each positive number, different from unity, is either a prime number, that is, a number divisible only by itself and unity, or else a composite number. In the latter case we can always express it as a product of prime numbers and – which is the most important thing – in only one way.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.