Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T21:56:13.639Z Has data issue: false hasContentIssue false

Chapter 22 - Computational Contributions of the Thalamus to Learning and Memory

from Section 9: - Computation

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

The higher-order thalamus (e.g., the pulvinar) is widely thought to play a critical role in its interactions with the neocortex, but identifying precisely what that role is has been somewhat challenging.Here, we describe how a computational approach to understanding the nature of learning and memory in the neocortex suggests three distinct, well-defined contributions of the thalamus: (1) attention, which is perhaps the most widely discussed function of the pulvinar, is supported by a pooled inhibition dynamic involving the thalamic reticular nucleus; (2) predictive learning, where the pulvinar serves as a kind of screen on which predictions are projected, and a temporal difference between predictions and subsequent outcomes can drive error-driven learning throughout the thalamocortical system; and (3) executive function in the circuits involving the frontal cortex, where the mediodorsal (MD) thalamus is largely similar anatomically to the pulvinar and could thus support similar attentional and predictive learning functions, whereas ventral thalamic nuclei receive inhibitory modulation from the basal ganglia, supporting a gating function to regulate action based on a strong competition of Go versus No Go informed by reinforcement learning.Taken together, these important modulatory and learning contributions of the thalamus suggest that a full computational understanding of the neocortex is significantly incomplete without an integration of the thalamic circuitry.

Type
Chapter
Information
The Thalamus , pp. 416 - 431
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsten, A. F. T., Wang, M. J., & Paspalas, C. D. (2012, October). Neuromodulation of thought: Flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron, 76(1), 223239. doi: 10.1016/j.neuron.2012.08.038CrossRefGoogle ScholarPubMed
Baars, B. J. (1988). A Cognitive Theory of Consciousness. New York: Cambridge University Press.Google Scholar
Badre, D., & Frank, M. J. (2012, March). Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 2: Evidence from fMRI. Cerebral Cortex, 22(3), 527536. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21693491CrossRefGoogle ScholarPubMed
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012, November). Canonical microcircuits for predictive coding. Neuron, 76(4), 695711. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23177956Google Scholar
Bender, D. B., & Youakim, M. (2001, January). Effect of attentive fixation in macaque thalamus and cortex. Journal of Neurophysiology, 85, 219234. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11152722Google Scholar
Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 121. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20192813Google Scholar
Bortone, D. S., Olsen, S. R., & Scanziani, M. (2014, April). Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron, 82(2), 474485. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24656931Google Scholar
Braver, T. S., & Cohen, J. D. (2000, December). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In Monsell, S. & Driver, J. (Eds.), Control of Cognitive Processes: Attention and Performance XVIII (pp. 713737). Cambridge, MA: MIT Press.Google Scholar
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009, May). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 73517356.Google Scholar
Brown, R. G., & Marsden, C. D. (1990, February). Cognitive function in Parkinson’s disease: From description to theory. Trends in Neurosciences, 13, 2129. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1688671Google Scholar
Buffalo, E. A., Fries, P., Landman, R., Buschman, T. J., & Desimone, R. (2011, July). Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 108(27), 1126211267. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21690410Google Scholar
Buschman, T. J., & Kastner, S. (2015, October). From behavior to neural dynamics: An integrated theory of attention. Neuron, 88(1), 127144. doi: 10.1016/j.neuron.2015.09.017Google Scholar
Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010, April). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14(4), 147153. doi: 10.1016/j.tics.2010.01.007CrossRefGoogle ScholarPubMed
Chatham, C. H., Frank, M., & Badre, D. (2014, January). Corticostriatal output gating during selection from working memory. Neuron, 81(4), 930942.CrossRefGoogle ScholarPubMed
Chatham, C. H., Herd, S. A., Brant, A. M., Hazy, T. E., Miyake, A., O’Reilly, R. C., & Friedman, N. P. (2011, November). From an executive network to executive control: A computational model of the n-back task. Journal of Cognitive Neuroscience, 23, 35983619. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21563882Google Scholar
Chen, H., Hua, S. E., Smith, M. A., Lenz, F. A., & Shadmehr, R. (2006, October). Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cerebral Cortex, 16(10), 14621473. doi: 10.1093/cercor/bhj087Google Scholar
Clark, A. (2013, June). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23663408CrossRefGoogle ScholarPubMed
Clascá, F., Rubio-Garrido, P., & Jabaudon, D. (2012). Unveiling the diversity of thalamocortical neuron subtypes. European Journal of Neuroscience, 35(10), 15241532. doi: 10.1111/j.1460-9568.2012.08033.xGoogle Scholar
Clayton, M. S., Yeung, N., & Kadosh, R. C. (2018). The many characters of visual alpha oscillations. European Journal of Neuroscience, 48(7), 24982508. doi: 10.1111/ejn.13747Google Scholar
Connors, B. W., Gutnick, M. J., & Prince, D. A. (1982, December). Electrophysiological properties of neocortical neurons in vitro. Journal of Neurophysiology, 48(6), 13021320. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6296328Google Scholar
Crick, F. (1984, July). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 81, 45864590. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6589612Google Scholar
Crick, F. (1989, February). The recent excitement about neural networks. Nature, 337, 129132. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2911347Google Scholar
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008, June). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 15101512. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18556560CrossRefGoogle ScholarPubMed
Dayan, P., Hinton, G. E., Neal, R. N., & Zemel, R. S. (1995, January). The Helmholtz machine. Neural Computation, 7(5), 889904.Google Scholar
Dehaene, S., & Naccache, L. (2001, February). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 137. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11164022Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193222. doi: 10.1146/annurev.ne.18.030195.001205Google Scholar
Dougherty, K., Cox, M. A., Ninomiya, T., Leopold, D. A., & Maier, A. (2017, February). Ongoing alpha activity in v1 regulates visually driven spiking responses. Cerebral Cortex, 27(2), 11131124. doi: 10.1093/cercor/bhv304Google Scholar
Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992, April). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255(5040), 9092. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1553535Google Scholar
Edelman, G. M., & Tononi, G. (2001). A Universe of Consciousness: How Matter Becomes Imagination. New York, NY: Basic Books.Google Scholar
Elman, J., Bates, E., Karmiloff-Smith, A., Johnson, M., Parisi, D., & Plunkett, K. (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT Press.Google Scholar
Elman, J. L. (1990, January). Finding structure in time. Cognitive Science, 14(2), 179211.Google Scholar
Elston, G. N. (2003). Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cerebral Cortex, 13(11), 11241138. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14576205Google Scholar
Farah, M. J. (1990). Visual Agnosia. Cambridge, MA: MIT Press.Google Scholar
Fiebelkorn, I. C., & Kastner, S. (2019, February). A rhythmic theory of attention. Trends in Cognitive Sciences, 23(2), 87101. doi: 10.1016/j.tics.2018.11.009Google Scholar
Fiebelkorn, I. C., Pinsk, M. A., & Kastner, S. (2018, August). A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron, 99(4), 842–853.e8. doi: 10.1016/j.neuron.2018.07.038Google Scholar
Franceschetti, S., Guatteo, E., Panzica, F., Sancini, G., Wanke, E., & Avanzini, G. (1995, October). Ionic mechanisms underlying burst firing in pyramidal neurons: Intracellular study in rat sensorimotor cortex. Brain Research, 696(1–2), 127139. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8574660Google Scholar
Frandolig, J. E., Matney, C. J., Lee, K., Kim, J., Chevée, M., Kim, S.-J., … Brown, S. P. (2019, September). The synaptic organization of layer 6 circuits reveals inhibition as a major output of a neocortical sublamina. Cell Reports, 28(12), 3131–3143.e5. doi: 10.1016/j.celrep.2019.08.048Google Scholar
Frank, M. J. (2005, January). When and when not to use your subthalamic nucleus: Lessons from a computational model of the basal ganglia. In Seth, A. K., Prescott, T. J., & Bryson, J. J. (Eds.), Modelling Natural Action Selection: Proceedings of an International Workshop (pp. 5360). Sussex: AISB.Google Scholar
Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001, January). Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, and Behavioral Neuroscience, 1, 137160. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12467110Google Scholar
Friston, K. (2005, April). A theory of cortical responses. Philosophical Transactions of the Royal Society B, 360(1456), 815836. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15937014CrossRefGoogle ScholarPubMed
Friston, K. (2010, February). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127138. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20068583Google Scholar
Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441466. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21469956Google Scholar
Gers, F. A., Schmidhuber, J., & Cummins, F. (2000, November). Learning to forget: Continual prediction with LSTM. Neural Computation, 12, 24512471. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11032042Google Scholar
Giguere, M., & Goldman-Rakic, P. S. (1988). Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. Journal of Comparative Neurology, 277(2), 195213. doi: 10.1002/cne.902770204Google Scholar
Graybiel, A. M. (1995). Building action repertoires: Memory and learning functions of the basal ganglia. Current Opinion in Neurobiology, 5(6), 733741. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8805417Google Scholar
Grossberg, S. (1999). How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision, 12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10221426Google Scholar
Guo, K., Yamawaki, N., Svoboda, K., & Shepherd, G. M. G. (2018, October). Anterolateral motor cortex connects with a medial subdivision of ventromedial thalamus through cell type-specific circuits, forming an excitatory thalamo-cortico-thalamic loop via layer 1 apical tuft dendrites of layer 5b pyramidal tract type neurons. Journal of Neuroscience, 38(41), 87878797. doi: 10.1523/JNEUROSCI.1333-18.2018Google Scholar
Guo, Z. V., Inagaki, H. K., Daie, K., Druckmann, S., Gerfen, C. R., & Svoboda, K. (2017, May). Maintenance of persistent activity in a frontal thalamocortical loop. Nature, 545(7653), 181186. doi: 10.1038/nature22324Google Scholar
Halassa, M. M., & Kastner, S. (2017, December). Thalamic functions in distributed cognitive control. Nature Neuroscience, 20(12), 1669. doi: 10.1038/s41593-017-0020-1Google Scholar
Halassa, M. M., Siegle, J. H., Ritt, J. T., Ting, J. T., Feng, G., & Moore, C. I. (2011, September). Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience, 14(9), 11181120. doi: 10.1038/nn.2880CrossRefGoogle ScholarPubMed
Harris, K. D., & Shepherd, G. M. G. (2015, February). The neocortical circuit: Themes and variations. Nature Neuroscience, 18(2), 170181. doi: 10.1038/nn.3917Google Scholar
Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006, April). Banishing the homunculus: Making working memory work. Neuroscience, 139, 105118. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16343792Google Scholar
Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007, August). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1485), 16011613. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17428778CrossRefGoogle ScholarPubMed
He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007, March). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905918. doi: 10.1016/j.neuron.2007.02.013Google Scholar
Herd, S. A., Krueger, K., Nair, A., Mollick, J., & O’Reilly, R. (2019). Neural mechanisms of human decision-making. Cognitive Affective and Behavioral Neuroscience. Retrieved from https://arxiv.org/abs/1912.07660Google Scholar
Herd, S. A., O’Reilly, R. C., Hazy, T. E., Chatham, C. H., Brant, A. M., & Friedman, N. P. (2014, April). A neural network model of individual differences in task switching abilities. Neuropsychologia, 62, 375389. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24791709Google Scholar
Hochreiter, S., & Schmidhuber, J. (1997, January). Long short-term memory. Neural Computation, 9, 17351780.Google Scholar
Houk, J. C. (2005, June). Agents of the mind. Biological Cybernetics, 92(6), 427437. Retrieved from http://dx.doi.org/10.1007/s00422-005–0569-8Google Scholar
Ilinsky, I. A., Jouandet, M. L., & Goldman-Rakic, P. S. (1985). Organization of the nigrothalamocortical system in the rhesus monkey. Journal of Comparative Neurology, 236(3), 315330. doi: 10.1002/cne.902360304Google Scholar
Jensen, O., Bonnefond, M., & VanRullen, R. (2012, April). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200206. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22436764Google Scholar
Jones, E. G. (1998a). A new view of specific and nonspecific thalamocortical connections. Advances in Neurology, 77, 4971. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9709817Google Scholar
Jones, E. G. (1998b, April). Viewpoint: The core and matrix of thalamic organization. Neuroscience, 85(2), 331345. doi: 10.1016/S0306-4522(97)00581-2Google Scholar
Jones, E. G. (2007). The Thalamus (2nd ed., Vol. 2). Cambridge: Cambridge University Press.Google Scholar
Karnath, H. O., Himmelbach, M., & Rorden, C. (2002, February). The subcortical anatomy of human spatial neglect: Putamen, caudate nucleus and pulvinar. Brain: A Journal of Neurology, 125, 350360. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11844735Google Scholar
Kawato, M., Hayakawa, H., & Inui, T. (1993, January). A forward-inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4(4), 415422. doi: 10.1088/0954-898X 4 4 001Google Scholar
Klimesch, W. (2011, August). Evoked alpha and early access to the knowledge system: The P1 inhibition timing hypothesis. Brain Research, 1408, 5271. doi: 10.1016/j.brainres.2011.06.003Google Scholar
Kobatake, E., & Tanaka, K. (1994, January). Neuronal selectivities to complex object features in the ventral visual pathway. Journal of Neurophysiology, 71(3), 856867.Google Scholar
Kohonen, T. (1989). Self-organization and associative memory.New York: Springer-Verlag.CrossRefGoogle Scholar
Kok, P., & de Lange, F. P. (2015). Predictive coding in sensory cortex. In Forstmann, B. U. & Wagenmakers, E-J (Eds.),An Introduction to Model-Based Cognitive Neuroscience (pp. 221244). New York: Springer. doi: 10.1007/978-1-4939-2236-9 11Google Scholar
Kok, P., Jehee, J. F. M., & de Lange, F. P. (2012, July). Less is more: Expectation sharpens representations in the primary visual cortex. Neuron, 75(2), 265270. doi: 10.1016/j.neuron.2012.04.034Google Scholar
Kritzer, M. F., & Goldman-Rakic, P. S. (1995, August). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 359(1), 131143. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8557842Google Scholar
Kuramoto, E., Furuta, T., Nakamura, K. C., Unzai, T., Hioki, H., & Kaneko, T. (2009, September). Two types of thalamocortical projections from the motor thalamic nuclei of the rat: A single neuron-tracing study using viral vectors. Cerebral cortex, 19(9), 20652077. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19174446Google Scholar
Kuramoto, E., Ohno, S., Furuta, T., Unzai, T., Tanaka, Y. R., Hioki, H., & Kaneko, T. (2015, January). Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior–ventral lateral nuclear complex in the rat. Cerebral Cortex, 25(1), 221235. doi: 10.1093/cercor/bht216Google Scholar
LaBerge, D., & Buchsbaum, M. S. (1990, March). Positron emission tomographic measurements of pulvinar activity during an attention task. Journal of Neuroscience, 10, 613619. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2303863Google Scholar
Lamme, V. A. F. (2006, January). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10(11), 494501. doi: 10.1016/j.tics.2006.09.001CrossRefGoogle ScholarPubMed
Larkum, M. E., Petro, L. S., Sachdev, R. N. S., & Muckli, L. (2018). A perspective on cortical layering and layer-spanning neuronal elements. Frontiers in Neuroanatomy, 12. doi: 10.3389/fnana.2018.00056Google Scholar
Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999, March). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338341. doi: 10.1038/18686Google Scholar
LeCun, Y., Bengio, Y., & Hinton, G. (2015, May). Deep learning. Nature, 521(7553), 436444. doi: 10.1038/nature14539Google Scholar
Lee, T. S., & Mumford, D. (2003, July). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America, 20(7), 14341448. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12868647/Google Scholar
Lewis, L. D., Voigts, J., Flores, F. J., Schmitt, L. I., Wilson, M. A., Halassa, M. M., & Brown, E. N. (2015, October). Thalamic reticular nucleus induces fast and local modulation of arousal state. eLife, 4, e08760. doi: 10.7554/eLife.08760Google Scholar
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020, June). Backpropagation and the brain. Nature Reviews Neuroscience, 21(6), 335346. doi: 10.1038/s41583-020-0277-3Google Scholar
Lisman, J. E., Fellous, J. M., & Wang, X. J. (1999, April). A role for NMDA-receptor channels in working memory. Nature Neuroscience, 1, 273275. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10195158Google Scholar
Lotter, W., Kreiman, G., & Cox, D. (2016, May). Deep predictive coding networks for video prediction and unsupervised learning. arXiv:1605.08104 [cs, q-bio]. Retrieved from http://arxiv.org/abs/1605.08104Google Scholar
Luczak, A., Bartho, P., & Harris, K. D. (2009, May). Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron, 62(3), 413425. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19447096Google Scholar
Luczak, A., Bartho, P., & Harris, K. D. (2013, January). Gating of sensory input by spontaneous cortical activity. Journal of Neuroscience, 33(4), 16841695. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23345241Google Scholar
Luo, Y., Boix, X., Roig, G., Poggio, T., & Zhao, Q. (2015, November). Foveation-based mechanisms alleviate adversarial examples. arXiv:1511.06292 [cs]. Retrieved from http://arxiv.org/abs/1511.06292Google Scholar
Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002, January). Dynamic brain sources of visual evoked responses. Science, 295, 690693.Google Scholar
Manto, M. (2009, April). Mechanisms of human cerebellar dysmetria: Experimental evidence and current conceptual bases. Journal of NeuroEngineering and Rehabilitation, 6(1), 10. doi: 10.1186/1743-0003-6–10Google Scholar
Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., … Kennedy, H. (2014, January). Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex: Cortical counterstreams. Journal of Comparative Neurology, 522(1), 225259. doi: 10.1002/cne.23458Google Scholar
Mathewson, K., Gratton, G., Fabiani, M., Beck, D., & Ro, T. (2009). To see or not to see: Prestimulus alpha phase predicts visual awareness. Journal of Neuroscience, 29(9), 27252732.Google Scholar
Mathewson, K. E., Prudhomme, C., Fabiani, M., Beck, D. M., Lleras, A., & Gratton, G. (2012, August). Making waves in the stream of consciousness: Entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. Journal of Cognitive Neuroscience, 24(12), 23212333. doi: 10.1162/jocn a 00288Google Scholar
Middleton, F. A., & Strick, P. L. (2000, May). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research, 31(2–3), 236250. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10719151Google Scholar
Mink, J. W. (1996, March). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50(4), 381425. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9004351Google Scholar
Mumford, D. (1991, June). On the computational architecture of the neocortex. Biological Cybernetics, 65(2), 135145. doi: 10.1007/BF00202389Google Scholar
Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biological Cybernetics, 66(3), 241251. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1540675Google Scholar
Münkle, M. C., Waldvogel, H. J., & Faull, R. L. M. (2000, July). The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. Journal of Chemical Neuroanatomy, 19(3), 155173. doi: 10.1016/S0891-0618(00)00060-0Google Scholar
Nambu, A. (2008, December). Seven problems on the basal ganglia. Current Opinion in Neurobiology, 18(6), 595604. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19081243Google Scholar
Olsen, S., Bortone, D., Adesnik, H., & Scanziani, M. (2012, February). Gain control by layer six in cortical circuits of vision. Nature, 483(7387), 4752.Google Scholar
O’Reilly, R. C. (1996, January). Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm. Neural Computation, 8(5), 895938. doi: 10.1162/neco.1996.8.5.895Google Scholar
O’Reilly, R. C. (2006, October). Biologically based computational models of high-level cognition. Science, 314(5796), 9194. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17023651CrossRefGoogle ScholarPubMed
O’Reilly, R. C. (2020, April). Unraveling the mysteries of motivation. Trends in Cognitive Sciences, 24(6), 425434. doi: 10.1016/j.tics.2020.03.001Google Scholar
O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283328. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16378516Google Scholar
O’Reilly, R. C., Hazy, T. E., & Herd, S. A. (2016). The Leabra cognitive architecture: How to play 20 principles with nature and win! In Chipman, S. (Ed.), Oxford Handbook of Cognitive Science. Oxford: Oxford University Press. Retrieved from http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199842193.001.0001/oxfordhb-9780199842193-e-8Google Scholar
O’Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press.Google Scholar
O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., & Contributors. (2012). Computational Cognitive Neuroscience. Wiki Book, 1st Ed. Retrieved from http://ccnbook.colorado.eduGoogle Scholar
O’Reilly, R. C., Nair, A., Russin, J. L., & Herd, S. A. (2020, March). How Sequential interactive processing within frontostriatal loops supports a continuum of habitual to controlled processing. Frontiers in Psychology, 11, 380. doi: 10.3389/fpsyg.2020.00380Google Scholar
O’Reilly, R. C., Noelle, D. C., Braver, T. S., & Cohen, J. D. (2002, February). Prefrontal cortex and dynamic categorization tasks: Representational organization and neuromodulatory control. Cerebral Cortex, 12, 246257. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11839599Google Scholar
O’Reilly, R. C., Russin, J. L., Zolfaghar, M., & Rohrlich, J. (2021). Deep predictive learning in neocortex and pulvinar. Journal of Cognitive Neuroscience, 33(6), 11581196.Google Scholar
O’Reilly, R. C., Wyatte, D., Herd, S. A., Mingus, B., & Jilk, D. J. (2013). Recurrent processing during object recognition. Frontiers in Psychology, 4(124). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23554596Google Scholar
O’Reilly, R. C., Wyatte, D., & Rohrlich, J. (2014, July). Learning through time in the thalamocortical loops. arXiv:1407.3432 [q-bio]. Retrieved from http://arxiv.org/abs/1407.3432Google Scholar
O’Reilly, R. C., Wyatte, D. R., & Rohrlich, J. (2017, September). Deep predictive learning: A comprehensive model of three visual streams. arXiv:1709.04654 [q-bio]. Retrieved from http://arxiv.org/abs/1709.04654Google Scholar
Ouden, H. E. M., Kok, P., & Lange, F. P. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3(548). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23248610Google Scholar
Pasupathy, A., & Miller, E. K. (2005, January). Different time courses for learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873876. Retrieved from http://www.nature.com/nature/journal/v433/n7028/full/nature03287.htmlGoogle Scholar
Petersen, S. E., Robinson, D. L., & Morris, J. D. (1987, January). Contributions of the pulvinar to visual spatial attention. Neuropsychologia, 25(1), 97105. doi: 10.1016/0028-3932(87)90046-7Google Scholar
Phillips, J. W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., … Hantman, A. W. (2019, November). A repeated molecular architecture across thalamic pathways. Nature Neuroscience, 22(11), 19251935. doi: 10.1038/s41593-019-0483-3Google Scholar
Rac-Lubashevsky, R., & Frank, M. J. (2020, December). Analogous computations in working memory input, output and motor gating: Electrophysiological and computational modeling evidence. bioRxiv, 2020.12.21.423791. doi: 10.1101/2020.12.21.423791CrossRefGoogle Scholar
Raizada, R. D. S., & Grossberg, S. (2003, January). Towards a theory of the laminar architecture of cerebral cortex: Computational clues from the visual system. Cerebral Cortex, 13(1), 100113. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12466221Google Scholar
Ramaswamy, S., & Markram, H. (2015). Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron. Frontiers in Cellular Neuroscience, 9. doi: 10.3389/fncel.2015.00233Google Scholar
Rao, R. P., & Ballard, D. H. (1999, January). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 7987. doi: 10.1038/4580Google Scholar
Redinbaugh, M. J., Phillips, J. M., Kambi, N. A., Mohanta, S., Andryk, S., Dooley, G. L., … Saalmann, Y. B. (2020, April). Thalamus modulates consciousness via layer-specific control of cortex. Neuron, 106(1), 66–75.e12. doi: 10.1016/j.neuron.2020.01.005CrossRefGoogle ScholarPubMed
Reynolds, J. H., & Desimone, R. (2003, March). Interacting roles of attention and visual salience in V4. Neuron, 37, 853863. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12628175Google Scholar
Reynolds, J. H., & Heeger, D. J. (2009, January). The normalization model of attention. Neuron, 61(2), 168185. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19186161/Google Scholar
Richter, D., & de Lange, F. P. (2019, August). Statistical learning attenuates visual activity only for attended stimuli. eLife, 8, e47869. doi: 10.7554/eLife.47869Google Scholar
Rikhye, R. V., Gilra, A., & Halassa, M. M. (2018, December). Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nature Neuroscience, 21(12), 17531763. doi: 10.1038/s41593-018-0269-zGoogle Scholar
Ringach, DL. Sparse thalamo cortical convergence. Current Biology. 2021 May 24;31(10):2199–202.Google Scholar
Robinson, D. L., & Petersen, S. E. (1992, June). The pulvinar and visual salience. Trends in Neurosciences, 15, 127132. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1374970Google Scholar
Rougier, N. P., & O’Reilly, R. C. (2002, January). Learning representations in a gated prefrontal cortex model of dynamic task switching. Cognitive Science, 26, 503520. Retrieved from http://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog26044Google Scholar
Rovó, Z., Ulbert, I., & Acsády, L. (2012, December). Drivers of the primate thalamus. Journal of Neuroscience, 32(49), 1789417908. doi: 10.1523/JNEUROSCI.2815-12.2012Google Scholar
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986, January). Learning representations by back-propagating errors. Nature, 323(9), 533536.Google Scholar
Rumelhart, D. E., & Zipser, D. (1985, January). Feature discovery by competitive learning. Cognitive Science, 9(1), 75112. doi: 10.1207/s15516709cog0901 5Google Scholar
Saalmann, Y. B., & Kastner, S. (2011, July). Cognitive and perceptual functions of the visual thalamus. Neuron, 71(2), 209223. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21791281Google Scholar
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012, August). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753756. doi: 10.1126/science.1223082Google Scholar
Sakata, S., & Harris, K. D. (2009, November). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64(3), 404418. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19914188CrossRefGoogle ScholarPubMed
Sakata, S., & Harris, K. D. (2012). Laminar-dependent effects of cortical state on auditory cortical spontaneous activity. Frontiers in Neural Circuits, 6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23267317Google Scholar
Sanders, H., Berends, M., Major, G., Goldman, M. S., & Lisman, J. E. (2013, January). NMDA and GABAB (KIR) conductances: The “perfect couple” for bistability. Journal of Neuroscience, 33(2), 424429. doi: 10.1523/JNEUROSCI.1854-12.2013Google Scholar
Schiff, N. D. (2008). Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Annals of the New York Academy of Sciences, 1129(1), 105118. doi: 10.1196/annals.1417.029Google Scholar
Shen, W., Flajolet, M., Greengard, P., & Surmeier, D. J. (2008, August). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321(5890), 848851. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18687967Google Scholar
Sherman, S. M., & Guillery, R. W. (2006). Exploring the Thalamus and Its Role in Cortical Function. Cambridge, MA: MIT Press. Retrieved from http://www.scholarpedia.org/article/ThalamusGoogle Scholar
Shipp, S. (2003, October). The functional logic of cortico-pulvinar connections. Philosophical Transactions of the Royal Society of London B, 358(1438), 16051624. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14561322CrossRefGoogle ScholarPubMed
Silva, L. R., Amitai, Y., & Connors, B. W. (1991, January). Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science, 251(4992), 432435. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1824881CrossRefGoogle ScholarPubMed
Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M., & Tolias, A. S. (2019, September). Engineering a less artificial intelligence. Neuron, 103(6), 967979. doi: 10.1016/j.neuron.2019.08.034Google Scholar
Snow, J. C., Allen, H. A., Rafal, R. D., & Humphreys, G. W. (2009, March). Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey. Proceedings of the National Academy of Sciences, 106(10), 40544059. doi: 10.1073/pnas.0810086106CrossRefGoogle ScholarPubMed
Spaak, E., de Lange, F. P., & Jensen, O. (2014, March). Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. Journal of Neuroscience, 34(10), 35363544. doi: 10.1523/JNEUROSCI.4385-13.2014Google Scholar
Summerfield, C., & Egner, T. (2009, September). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403409. doi: 10.1016/j.tics.2009.06.003Google Scholar
Tanibuchi, I., Kitano, H., & Jinnai, K. (2009a, November). Substantia nigra output to prefrontal cortex via thalamus in monkeys. I. Electrophysiological identification of thalamic relay neurons. Journal of Neurophysiology, 102(5), 29332945. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19692504Google Scholar
Tanibuchi, I., Kitano, H., & Jinnai, K. (2009b, November). Substantia nigra output to prefrontal cortex via thalamus in monkeys. II. Activity of thalamic relay neurons in delayed conditional go/no-go discrimination task. Journal of Neurophysiology, 102(5116), 29462954. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19692503Google Scholar
Thomson, A. M. (2010). Neocortical layer 6, a review. Frontiers in Neuroanatomy, 4(13). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20556241Google Scholar
Tononi, G. (2004, November). An information integration theory of consciousness. BMC Neuroscience, 5, 42. doi: 10.1186/1471-2202-5-42Google Scholar
Treisman, A. (1993, January). The perception of features and objects. In Baddeley, A. & Weiskrantz, L. (Eds.), Attention: Selection, Awareness, and Control: A Tribute to Donald Broadbent (pp. 535). Oxford: Oxford University Press.Google Scholar
Tsumoto, T, Creutzfeldt OD, Legendy CR (1978) Functional organization of the cortifugal system from visual cortex to lateral geniculate nucleus in the cat. Exp Brain Res 32:345–364.Google Scholar
Usrey, W. M., & Sherman, S. M. (2018). Corticofugal circuits: Communication lines from the cortex to the rest of the brain. Journal of Comparative Neurology, 527(3), 640650. doi: 10.1002/cne.24423Google Scholar
van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C., & Roelfsema, P. R. (2014, October). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(40), 1433214341. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25205811Google Scholar
VanRullen, R., & Koch, C. (2003, May). Is perception discrete or continuous? Trends in Cognitive Sciences, 7(5), 207213. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12757822Google Scholar
von Helmholtz, H. (1867). Treatise on Physiological Optics, Vol III. Courier Corporation.Google Scholar
von Stein, A., Chiang, C., & König, P. (2000, December). Top-down processing mediated by interareal synchronization. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 1474814753. doi: 10.1073/pnas.97.26.14748Google Scholar
Voytek, B., & Knight, R. T. (2010, October). Prefrontal cortex and basal ganglia contributions to visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 1816718172. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20921401Google Scholar
Walsh, K. S., McGovern, D. P., Clark, A., & O’Connell, R. G. (2020, March). Evaluating the neurophysiological evidence for predictive processing as a model of perception. Annals of the New York Academy of Sciences, 1464(1), 242268. doi: 10.1111/nyas.14321CrossRefGoogle Scholar
Wang, M., Yang, Y., Wang, C.-J., Gamo, N. J., Jin, L. E., Mazer, J. A., … Arnsten, A. F. T. (2013, February). NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77(4), 736749. doi: 10.1016/j.neuron.2012.12.032CrossRefGoogle Scholar
Ward, L. M. (2011, June). The thalamic dynamic core theory of conscious experience. Consciousness and Cognition, 20(2), 464486. doi: 10.1016/j.concog.2011.01.007Google Scholar
Watanabe, Y., & Funahashi, S. (2012, January). Thalamic mediodorsal nucleus and working memory. Neuroscience & Biobehavioral Reviews, 36(1), 134142. doi: 10.1016/j.neubiorev.2011.05.003Google Scholar
Watanabe, Y., Takeda, K., & Funahashi, S. (2009, June). Population vector analysis of primate mediodorsal thalamic activity during oculomotor delayed-response performance. Cerebral Cortex, 19, 13131321. Retrieved from http://cercor.oxfordjournals.org/cgi/content/abstract/19/6/1313Google Scholar
Whittington, J. C. R., & Bogacz, R. (2019, March). Theories of error back-propagation in the brain. Trends in Cognitive Sciences, 23(3), 235250. doi: 10.1016/j.tics.2018.12.005Google Scholar
Wig, G. S. (2017). Segregated systems of human brain networks. Trends in Cognitive Sciences, 21(12), 981–996.Google Scholar
Wimmer, R. D., Schmitt, L. I., Davidson, T. J., Nakajima, M., Deisseroth, K., & Halassa, M. M. (2015, October). Thalamic control of sensory selection in divided attention. Nature, 526(7575), 705709. doi: 10.1038/nature15398Google Scholar
Wurtz, R. H. (2008, September). Neuronal mechanisms of visual stability. Vision Research, 48(20), 20702089. doi: 10.1016/j.visres.2008.03.021Google Scholar
Wyatte, D., Curran, T., & O’Reilly, R. C. (2012). The limits of feedforward vision: Recurrent processing promotes robust object recognition when objects are degraded. Journal of Cognitive Neuroscience, 24(11), 22482261. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22905822Google Scholar
Wyder, M. T., Massoglia, D. P., & Stanford, T. R. (2004, June). Contextual modulation of central thalamic delay-period activity: Representation of visual and saccadic goals. Journal of Neurophysiology, 91(6), 26282648. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14762161Google Scholar
Zhou, H., Schafer, R. J., & Desimone, R. (2016). Pulvinar-cortex interactions in vision and attention. Neuron, 89, 209220.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×