Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T22:48:09.211Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 February 2020

Gilles Pisier
Affiliation:
Texas A & M University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Tensor Products of C*-Algebras and Operator Spaces
The Connes–Kirchberg Problem
, pp. 470 - 481
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akemann, C., Anderson, J., and Pedersen, G., Triangle inequalities in operator algebras, Lin. Multi. Alg. 11 (1982), 167178.Google Scholar
[2] Akemann, C. and Ostrand, P., Computing norms in group C-algebras, Amer. J. Math. 98 (1976), 10151047.Google Scholar
[3] Anantharaman-Delaroche, C., Amenability and exactness for dynamical systems and their C-algebras, Trans. Amer. Math. Soc. 354 (2002), 41534178.Google Scholar
[4] Anantharaman, C. and Popa, S., “An introduction to II1-factors”, Cambridge University Press, Cambridge, to appear.Google Scholar
[5] Andersen, T. B., Linear extensions, projections, and split faces, J. Funct. Anal. 17 (1974), 161173.Google Scholar
[6] Anderson, J., Extreme points in sets of positive linear maps in B(H), J. Funct. Anal. 31 (1979), 195217.CrossRefGoogle Scholar
[7] Anderson, G., Guionnet, A., and Zeitouni, O., An introduction to random matrices, Cambridge University Press, Cambridge, 2010.Google Scholar
[8] Ando, H. and Haagerup, U., Ultraproducts of von Neumann algebras, J. Funct. Anal. 266 (2014), 68426913.Google Scholar
[9] Ando, H., Haagerup, U., and Winsløw, C., Ultraproducts, QWEP von Neumann algebras, and the Effros–Maréchal topology, J. Reine Angew. Math. 715 (2016), 231250.Google Scholar
[10] Archbold, R. and Batty, C., C-tensor norms and slice maps, J. Lond. Math. Soc. 22 (1980), 127138.Google Scholar
[11] Arveson, W., Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578642.Google Scholar
[12] Arveson, W., Subalgebras of C-algebras, Acta Math. 123 (1969), 141–224. Part II. Acta Math. 128 (1972), 271308.CrossRefGoogle Scholar
[13] Arveson, W., Notes on extensions of C-algebras, Duke Math. J. 44 (1977), 329– 355.Google Scholar
[14] Arzhantseva, G. and Delzant, T., Examples of random groups, unpublished preprint, 2008.Google Scholar
[15] Avitsour, D., Free products of C-algebras, Trans. Amer. Math. Soc. 271 (1982), 423435.Google Scholar
[16] Bannon, J., Marrakchi, A., and Ozawa, N., Full factors and co-amenable inclusions, arXiv:1903.05395, 2019.Google Scholar
[17] Bekka, B., de la Harpe, P., and Valette, A., Kazhdan’s property (T), Cambridge University Press, Cambridge, 2008.Google Scholar
[18] Ben-Aroya, A. and Ta-Shma, A., Quantum expanders and the quantum entropy difference problem, arXiv:quant-ph/0702129, no. 3, 2007.Google Scholar
[19] Ben-Aroya, A., Schwartz, O., and Ta-Shma, A., Quantum expanders: motivation and constructions, Theory Comput. 6 (2010), 4779.CrossRefGoogle Scholar
[20] Berger, C. A., Coburn, L. A., and Lebow, A., Representation and index theory for C-algebras generated by commuting isometries, J. Funct. Anal. 27, no. 1 (1978), 5199.Google Scholar
[21] Bergh, J., On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775778.Google Scholar
[22] Bergh, J. and Löfström, J., Interpolation spaces: an introduction, Springer-Verlag, Berlin, 1976.Google Scholar
[23] Blackadar, B., Weak expectations and injectivity in operator algebras, Proc. Amer. Math. Soc. 68 (1978), 4953.Google Scholar
[24] Blackadar, B., Weak expectations and nuclear C-algebras, Indiana Univ. Math. J. 27 (1978), 10211026.Google Scholar
[25] Blackadar, B., Operator algebras: theory of C-algebras and von Neumann algebras, Encyclopaedia of mathematical sciences, 122, Springer-Verlag, Berlin, 2006.Google Scholar
[26] Blecher, D. P. and Labuschagne, L., Outers for noncommutative Hp revisited, Studia Math. 217 (2013), 265287.Google Scholar
[27] Blecher, D. P. and Le Merdy, C., Operator algebras and their modules: an operator space approach, Oxford University Press, Oxford, 2004.Google Scholar
[28] Blecher, D. and Paulsen, V., Explicit constructions of universal operator algebras and applications to polynomial factorization, Proc. Amer. Math. Soc. 112 (1991), 839850.Google Scholar
[29] Blecher, D., Ruan, Z. J., and Sinclair, A., A characterization of operator algebras, J. Funct. Anal. 89 (1990), 188201.Google Scholar
[30] Boca, F., Free products of completely positive maps and spectral sets, J. Funct. Anal. 97 (1991), 251263.Google Scholar
[31] Boca, F., A note on full free product C∗-algebras, lifting and quasidiagonality, operator theory, operator algebras and related topics (Timis¸oara, 1996), 51–63, Theta Found., Bucharest, 1997.Google Scholar
[32] Bordenave, C. and Collins, B., Eigenvalues of random lifts and polynomial of random permutations matrices, Ann. of Math. 190 (2019), 811875.Google Scholar
[33] Bourgain, J., Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc. 96 (1986), 221226.Google Scholar
[34] Bo˙zejko, M., Some aspects of harmonic analysis on free groups, Colloq. Math. 41 (1979), 265271.Google Scholar
[35] Bo˙zejko, M. and Fendler, G., Herz–Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Unione Mat. Ital. (6) 3-A (1984), 297302.Google Scholar
[36] Brown, L., Ext of certain free product C-algebras, J. Operator Theory 6 (1981), 135141.Google Scholar
[37] Brown, L., Invariant means and finite representation theory of C∗-algebras, Memoirs of the American Mathematical Society, 184, American Mathematical Society, Providence, RI, 2006.Google Scholar
[38] Brown, L. and Dykema, K., Popa algebras in free group factors, J. Reine Angew. Math. 573 (2004), 157180.Google Scholar
[39] Brown, N. P. and Ozawa, N., C-algebras and finite-dimensional approximations, Graduate studies in mathematics, 88, American Mathematical Society, Providence, RI, 2008.Google Scholar
[40] Burgdorf, S., Dykema, K., Klep, I., and Schweighofer, M., Addendum to “Connes’ embedding conjecture and sums of Hermitian squares” [Adv. Math. 217, no. 4 (2008) 1816–1837], Adv. Math. 252 (2014), 805811.Google Scholar
[41] de Cannière, J. and Haagerup, U., Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), 455500.CrossRefGoogle Scholar
[42] Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P., and Valette, A., Groups with the Haagerup property. Gromov’s a-T-menability, Birkhäuser Verlag, Basel, 2001.Google Scholar
[43] Ching, W. M., Free products of von Neumann algebras, Trans. Amer. Math. Soc. 178 (1973), 147163.Google Scholar
[44] Choi, M. D., A Schwarz inequality for positive linear maps on C-algebras, Illinois J. Math. 18 (1974), 565574.Google Scholar
[45] Choi, M. D. and Effros, E., Nuclear C-algebras and the approximation property, Amer. J. Math. 100 (1978), 6179.Google Scholar
[46] Choi, M. D. and Effros, E., Nuclear C*-algebras and injectivity. The general case, Indiana Univ. Math. J. 26 (1977), 443446.Google Scholar
[47] Choi, M. D. and Effros, E., Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156209.Google Scholar
[48] Choi, M. D. and Effros, E., Separable nuclear C-algebras and injectivity, Duke Math. J. 43 (1976), 309322.Google Scholar
[49] Choi, M. D. and Effros, E., The completely positive lifting problem for C-algebras, Ann. Math. 104 (1976), 585609.Google Scholar
[50] Christensen, E., Effros, E., and Sinclair, A., Completely bounded multilinear maps and C-algebraic cohomology, Invent. Math. 90 (1987), 279296.Google Scholar
[51] Christensen, E. and Sinclair, A., On von Neumann algebras which are complemented subspaces of B(H), J. Funct. Anal. 122 (1994), 91102.Google Scholar
[52] Christensen, E. and Sinclair, A., Module mappings into von Neumann algebras and injectivity, Proc. Lond. Math. Soc. 71 (1995), 618640.Google Scholar
[53] Christensen, E. and Wang, L., Von Neumann algebras as complemented subspaces of B(H). Internat. J. Math. 25 (2014), 1450107, 9 pp.Google Scholar
[54] McClanahan, K., C-algebras generated by elements of a unitary matrix, J. Funct. Anal. 107 (1992), 439457.Google Scholar
[55] Cohn, P. M., Basic algebra, Springer, London, 2003.Google Scholar
[56] Collins, B. and Male, C., The strong asymptotic freeness of Haar and deterministic matrices, Ann. Sci. Éc. Norm. Supér. 47 (2014), 147163.Google Scholar
[57] Collins, B. and Dykema, K., A linearization of Connes’ embedding problem, New York J. Math. 14 (2008), 617641.Google Scholar
[58] Comfort, W.W., Negrepontis, S., The theory of ultrafilters, Springer, New York, 1974.Google Scholar
[59] Connes, A., Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121155.Google Scholar
[60] Connes, A., A factor not anti-isomorphic to itself, Bull. Lond. Math. Soc. 7 (1975), 171174.Google Scholar
[61] Connes, A., Classification of injective factors. Cases II1, II, IIIλ, λ = 1, Ann. Math. (2) 104 (1976), 73115.Google Scholar
[62] Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Third edition. Springer-Verlag, New York, 1999.Google Scholar
[63] Courtney, K. and Sherman, D., “The universal C-algebra of a contraction”, arXiv:1811.04043, 2018, to appear.Google Scholar
[64] Cowling, M. and Haagerup, U., Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507549.Google Scholar
[65] Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.Google Scholar
[66] Cwikel, M. and Janson, S., Interpolation of analytic families of operators, Studia Math. 79 (1984), 6171.Google Scholar
[67] Davidson, K.. C-algebras by example, Fields Institute publication. Toronto, American Mathematical Society, Providence, RI, 1996.Google Scholar
[68] Davidson, K. and Kakariadis, E., A proof of Boca’s theorem, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), 869876.Google Scholar
[69] Davie, A. M., Matrix norms related to Grothendieck’s inequality, Banach spaces (Columbia, MO, 1984), Lecture Notes in Mathematics, 1166, Springer, Berlin, 1985.Google Scholar
[70] Devinatz, A., The factorization of operator valued analytic functions, Ann. Math. 73 (1961), 458495.Google Scholar
[71] Diestel, J., Fourie, J. H., and Swart, J., The metric theory of tensor products. Grothendieck’s résumé revisited, American Mathematical Society, Providence, RI, 2008.Google Scholar
[72] Dixmier, J., Les Algèbres d’Opérateurs dans l’Espace Hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris 1969. (In translation: von Neumann algebras, North-Holland, Amsterdam–New York 1981.)Google Scholar
[73] Douglas, R. and Howe, R., On the C-algebra of Toeplitz operators on the quarterplane, Trans. Amer. Math. Soc. 158 (1971), 203217.Google Scholar
[74] Douglas, R. and Pearcy, C., Von Neumann algebras with a single generator, Michigan Math. J. 16 (1969), 2126.Google Scholar
[75] Dykema, K. and Juschenko, K., Matrices of unitary moments, Math. Scand. 109 (2011), 225239.Google Scholar
[76] Dykema, K., Paulsen, V. and Prakash, J., Non-closure of the set of quantum correlations via graphs, Comm. Math. Phys. 365 (2019), 11251142.Google Scholar
[77] Effros, E. and Haagerup, U., Lifting problems and local reflexivity for C-algebras, Duke Math. J. 52 (1985), 103128.Google Scholar
[78] Effros, E., Junge, M., and Ruan, Z. J., Integral mappings and the principle of local reflexivity for noncommutative L1-spaces, Ann. Math. 151 (2000), 5992.Google Scholar
[79] Effros, E. and Lance, C., Tensor products of operator algebras, Adv. Math. 25 (1977), 134.CrossRefGoogle Scholar
[80] Effros, E. and Ruan, Z. J., Operator Spaces, Oxford University Press, Oxford, 2000.Google Scholar
[81] Elek, G. and Szabó, E., Hyperlinearity, essentially free actions and L2-invariants. The sofic property, Math. Ann. 332 (2005), 421441.Google Scholar
[82] Elliott, G., On approximately finite-dimensional von Neumann algebras, Math. Scand. 39 (1976), 91101.Google Scholar
[83] Elliott, G., On approximately finite-dimensional von Neumann algebras. II, Canad. Math. Bull. 21 (1978), 415418.Google Scholar
[84] Elliott, G. and Woods, E., The equivalence of various definitions for a properly infinite von Neumann algebra to be approximately finite dimensional, Proc. Amer. Math. Soc. 60 (1976), 175178.Google Scholar
[85] Eymard, P., L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181236.Google Scholar
[86] Farah, I., Hart, B., and Sherman, D., Model theory of operator algebras I: stability, Bull. Lond. Math. Soc. 45 (2013), 825838.Google Scholar
[87] Farah, I., Hart, B., and Sherman, D., Model theory of operator algebras III: elementary equivalence and II1 factors, Bull. Lond. Math. Soc. 46 (2014), 609628.Google Scholar
[88] Farah, I., Hart, B., and Sherman, D., Model theory of operator algebras II: model theory, Israel J. Math. 201 (2014), 477505.Google Scholar
[89] Farah, I. and Shelah, S., A dichotomy for the number of ultrapowers, J. Math. Log. 10 (2010), 4581.Google Scholar
[90] Farenick, D., Kavruk, A., and Paulsen, V., C-algebras with the weak expectation property and a multivariable analogue of Ando’s theorem on the numerical radius, J. Operator Theory 70 (2013), 573590.Google Scholar
[91] Farenick, D., Kavruk, A., Paulsen, V., and Todorov, I., Characterisations of the weak expectation property, New York J. Math. 24A (2018), 107135.Google Scholar
[92] Farenick, D. and Paulsen, V., Operator system quotients of matrix algebras and their tensor products, Math. Scand. 111 (2012), 210243.Google Scholar
[93] Friedman, J., A proof of Alon’s second eigenvalue conjecture and related problems, Mem. Amer. Math. Soc. 195, 910 (2008).Google Scholar
[94] Friedman, J., Joux, A., Roichman, Y., Stern, J., and Tillich, J.-P., The action of a few permutations on r-tuples is quickly transitive, Random Struct. Algo. 12 (1998), 335350.Google Scholar
[95] Fritz, T., Tsirelson’s problem and Kirchberg’s conjecture, Rev. Math. Phys. 24 (2012), 1250012, 67 pp.Google Scholar
[96] Gromov, M., Random walk in random groups, Geom. Funct. Anal. 13 (2003), 73146.Google Scholar
[97] Gross, L., A non-commutative extension of the Perron–Frobenius theorem, Bull. Amer. Math. Soc. 77 (1971), 343347.Google Scholar
[98] Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques, Boll. Soc. Mat. São-Paulo 8 (1953), 179. Reprinted in Resenhas 2 (1996), no. 4, 401–480.Google Scholar
[99] Guentner, E., Higson, N., and Weinberger, S., The Novikov conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 243268.Google Scholar
[100] Guichardet, A., Tensor products of C-algebras, Dokl. Akad. Nauk. SSSR 160 (1965), 986989.Google Scholar
[101] Guichardet, A., Tensor products of C∗-algebras (Part I. Finite tensor products. Part II. Infinite tensor products), Lecture Notes Series 12 and 13, Aarhus Universitet, 1969.Google Scholar
[102] Haagerup, U., The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271283.Google Scholar
[103] Haagerup, U., An example of a nonnuclear C-algebra, which has the metric approximation property, Invent. Math. 50 (1978–1979), 279293.Google Scholar
[104] Haagerup, U., Injectivity and decomposition of completely bounded maps, Operator algebras and their connections with topology and ergodic theory, 170– 222, Lecture Notes in Mathematics, 1132, Springer, Berlin, Heidelberg, 1985.Google Scholar
[105] Haagerup, U., A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space, J. Funct. Anal. 62 (1985), 160201.Google Scholar
[106] Haagerup, U., On convex combinations of unitary operators in C*-algebras, Mappings of operator algebras (Philadelphia, PA, 1988), 1–13, Progr. Math., 84, Birkhäuser Boston, Boston, MA, 1990.Google Scholar
[107] Haagerup, U., Self-polar forms, conditional expectations and the weak expectation property for C-algebras, Unpublished manuscript (1993).Google Scholar
[108] Haagerup, U., Group C-algebras without the completely bounded approximation property, J. Lie Theory 26 (2016), 861887.Google Scholar
[109] Haagerup, U., Knudby, S., and de Laat, T., A complete characterization of connected Lie groups with the approximation property, Ann. Sci. Éc. Norm. Supér. 49 (2016), 927946.Google Scholar
[110] Haagerup, U. and Kraus, J., Approximation properties for group C-algebras and group von Neumann algebras, Trans. Amer. Math. Soc. 344 (1994), 667699.Google Scholar
[111] Haagerup, U., Junge, M., and Xu, Q., A reduction method for noncommutative Lp-spaces and applications, Trans. Amer. Math. Soc. 362 (2010), 21252165.Google Scholar
[112] Haagerup, U., Kadison, R., and Pedersen, G., Means of unitary operators, revisited, Math. Scand. 100 (2007), 193197.Google Scholar
[113] Haagerup, U. and de Laat, T., Simple Lie groups without the approximation property, Duke Math. J. 162 (2013), 925964.Google Scholar
[114] Haagerup, U. and de Laat, T., Simple Lie groups without the approximation property II, Trans. Amer. Math. Soc. 368 (2016), 37773809.Google Scholar
[115] Haagerup, U. and Musat, M., Factorization and dilation problems for completely positive maps on von Neumann algebras, Comm. Math. Phys. 303 (2011), 555594.CrossRefGoogle Scholar
[116] Haagerup, U. and Musat, M., An asymptotic property of factorizable completely positive maps and the Connes embedding problem, Comm. Math. Phys. 338 (2015), 141176.Google Scholar
[117] Haagerup, U. and Pisier, G., Factorization of analytic functions with values in non-commutative L1-spaces, Canadian J. Math. 41 (1989), 882906.Google Scholar
[118] Haagerup, U. and Pisier, G., Bounded linear operators between C-algebras, Duke Math. J. 71 (1993), 889925.Google Scholar
[119] Haagerup, U. and Thorbjoernsen, S., Random matrices and K-theory for exact C-algebras, Doc. Math. 4 (1999), 341450 (electronic).Google Scholar
[120] Haagerup, U. and Thorbjørnsen, S., A new application of random matrices: Ext(C∗red(F2)) is not a group, Ann. Math. 162 (2005), 711775.Google Scholar
[121] Haagerup, U. and Winsløw, C., The Effros-Maréchal topology in the space of von Neumann algebras, Amer. J. Math. 120 (1998), 567617.Google Scholar
[122] Haagerup, U. and Winsløw, C., The Effros-Maréchal topology in the space of von Neumann algebras. II, J. Funct. Anal. 171 (2000), 401431.Google Scholar
[123] Hanche-Olsen, H. and Störmer, E., Jordan operator algebras, Pitman, Boston, 1984.Google Scholar
[124] Harcharras, A., On some “stability” properties of the full C-algebra associated to the free group F, Proc. Edinburgh Math. Soc. 41 (1998), 93116.Google Scholar
[125] Harmand, P., Werner, D., and Werner, W., M-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, 1547 Springer-Verlag, Berlin, 1993.Google Scholar
[126] de la Harpe, P., Topics in geometric group theory, The University of Chicago Press, Second printing, with corrections and updates, Chicago, 2003.Google Scholar
[127] de la Harpe, P. and Valette, A., La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger). Astérisque 175 (1989), Soc. Math. France, Paris.Google Scholar
[128] Harris, S., A non-commutative unitary analogue of Kirchberg’s conjecture, Indiana Univ. Math. J. 68 (2019), 503536.Google Scholar
[129] Harris, S. and Paulsen, V., Unitary correlation sets, Integral Equations Operator Theory 89 (2017), 125149.Google Scholar
[130] Harrow, A., Quantum expanders from any classical Cayley graph expander, Quantum Inf. Comput. 8 (2008), 715721.Google Scholar
[131] Harrow, A. and Hastings, M., Classical and quantum tensor product expanders, Quantum Inf. Comput. 9 (2009), 336360.Google Scholar
[132] Hastings, M., Random unitaries give quantum expanders, Phys. Rev. A (3) 76 no. 3 (2007), 032315, 11 pp.Google Scholar
[133] Helson, H., Lectures on invariant subspaces, Academic Press, New York, 1964.Google Scholar
[134] Hiai, F. and Nakamura, Y., Distance between unitary orbits in von Neumann algebras, Pacific J. Math. 138 (1989), 259294.Google Scholar
[135] Itoh, S., Conditional expectations in C-crossed products, Trans. Amer. Math. Soc. 267 (1981), 661667.Google Scholar
[136] Jolissaint, P., A characterization of completely bounded multipliers of Fourier algebras, Colloq. Math. 63 (1992), 311313.Google Scholar
[137] Junge, M. and Le Merdy, C., Factorization through matrix spaces for finite rank operators between C-algebras, Duke Math. J. 100, (1999), 299319.Google Scholar
[138] Junge, M., Navascues, M., Palazuelos, C., Peréz-García, D., Scholz, V.B., and Werner, R.F., Connes’ embedding problem and Tsirelson’s problem, J. Math. Phys. 52 (2011), 012102, 12 pp.Google Scholar
[139] Junge, M., Palazuelos, C., Perez-García, D., Villanueva, I., and Wolf, M. M., Operator Space theory: a natural framework for Bell inequalities, Phys. Rev. Lett. 104, 170405 (2010).Google Scholar
[140] Junge, M. and Palazuelos, C., Large violation of Bell inequalities with low entanglement, Comm. Math. Phys. 306 (2011), 695746.Google Scholar
[141] Junge, M. and Pisier, G., Bilinear forms on exact operator spaces and B(H) ⊗ B(H), Geom. Funct. Anal. 5 (1995), 329363.Google Scholar
[142] Kadison, R., Isometries of operator algebras, Ann. Math. 54 (1951), 325338.Google Scholar
[143] Kadison, R., A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. Math. 56 (1952), 494503.Google Scholar
[144] Kadison, R. and Pedersen, G., Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249266.Google Scholar
[145] Kadison, R. and Ringrose, J., Fundamentals of the theory of operator algebras, Vol. I, Birkhäuser Boston, Inc., Boston, MA, 1983.Google Scholar
[146] Kadison, R. and Ringrose, J., Fundamentals of the theory of operator algebras, Vol. II, Birkhäuser Boston, Inc., Boston, MA, 1992.Google Scholar
[147] Kadison, R. and Ringrose, J., Fundamentals of the theory of operator algebras, Vol. IV, Birkhäuser Boston, Inc., Boston, MA, 1992.Google Scholar
[148] Kassabov, M., Symmetric groups and expanders, Inv. Math. 170 (2007), 327354.Google Scholar
[149] Kavruk, A., Tensor products of operator systems and applications. Thesis (Ph.D.), University of Houston, 2011.Google Scholar
[150] Kavruk, A., Paulsen, V., Todorov, I., and Tomforde, M., Tensor products of operator systems, J. Funct. Anal. 261 (2011), 267299.Google Scholar
[151] Kavruk, A., Paulsen, V., Todorov, I., and Tomforde, M., Quotients, exactness, and nuclearity in the operator system category, Adv. Math. 235 (2013), 321360.Google Scholar
[152] Kavruk, A., The weak expectation property and Riesz interpolation, arXiv:1201.5414, 2012.Google Scholar
[153] Kavruk, A., Nuclearity related properties in operator systems, J. Operator Theory 71 (2014), 95156.Google Scholar
[154] Kirchberg, E., C-nuclearity implies CPAP, Math. Nachr. 76 (1977), 203212.Google Scholar
[155] Kirchberg, E., On nonsemisplit extensions, tensor products and exactness of group C-algebras, Invent. Math. 112 (1993), 449489.Google Scholar
[156] Kirchberg, E., Commutants of unitaries in UHF algebras and functorial properties of exactness, J. Reine Angew. Math. 452 (1994), 3977.Google Scholar
[157] Kirchberg, E., Discrete groups with Kazhdan’s property T and factorization property are residually finite, Math. Ann. 299 (1994), 551563.Google Scholar
[158] Kirchberg, E., Exact C∗-algebras, tensor products, and the classification of purely infinite algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 943–954, Birkhäuser, Basel, 1995.Google Scholar
[159] Kirchberg, E., On subalgebras of the CAR-algebra, J. Funct. Anal. 129 (1995), 3563.Google Scholar
[160] Kirchberg, E., On restricted perturbations in inverse images and a description of normalizer algebras in C-algebras, J. Funct. Anal. 129 (1995), 134.Google Scholar
[161]E. Kirchberg, Personal communication.Google Scholar
[162] Kirchberg, E. and Phillips, N. C., Embedding of exact C-algebras in the Cuntz algebra O2, J. Reine Angew. Math. 525 (2000), 1753.Google Scholar
[163] Klep, I. and Schweighofer, M., Connes’ embedding conjecture and sums of Hermitian squares, Adv. Math. 217 (2008), 18161837.Google Scholar
[164] Lafforgue, V. and De la Salle, M., Noncommutative Lp-spaces without the completely bounded approximation property, Duke Math. J. 160 (2011), 71116.Google Scholar
[165] Lance, C., On nuclear C-algebras, J. Funct. Anal. 12 (1973), 157176.Google Scholar
[166] Lehner, F., A characterization of the Leinert property, Proc. Amer. Math. Soc. 125 (1997), 34233431.Google Scholar
[167] Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, vol. I, Sequence spaces, Springer Verlag, Berlin 1976.Google Scholar
[168] Lehner, F., Computing norms of free operators with matrix coefficients, Amer. J. Math. 121 (1999), 453486.Google Scholar
[169] Lieb, E., Convex trace functions and the Wigner–Yanase–Dyson conjecture, Adv. Math. 11 (1973), 267288.Google Scholar
[170] Lindenstrauss, J. and Rosenthal, H. P., The Lp spaces, Israel J. Math. 7 (1969), 325349.Google Scholar
[171] Loring, T., Lifting solutions to perturbing problems in C∗-algebras, Fields Institute Monographs, American Mathematical Society, Providence, RI, 1997.Google Scholar
[172] Lubotzky, A., Discrete groups, expanding graphs and invariant measures, Progress in Math, 125. Birkhäuser, 1994.Google Scholar
[173] Lubotzky, A., What is Property (τ)? Notices Amer. Math. Soc. 52 (2005), 626627.Google Scholar
[174] Lubotzky, A., Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc. 49 (2012), 113162.Google Scholar
[175] Lubotzky, A., Phillips, R., and Sarnak, P., Hecke operators and distributing points on S2, I, Comm. Pure and Applied Math. 39 (1986), 149186.Google Scholar
[176] Mc Duff, D., Uncountably many II1 factors, Ann. Math. 90 (1969), 372377.Google Scholar
[177] Malcev, A. I., On isomorphic matrix representations of infinite groups of matrices (Russian), Mat. Sb. 8 (1940), 405–422 & Amer. Math. Soc. Transl. (2) 45 (1965), 1–18.Google Scholar
[178] Monod, N., Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA 110 (2013), 45244527.Google Scholar
[179] Nica, A., Asymptotically free families of random unitaries in symmetric groups, Pacific J. Math. 157 (1993), 295310.Google Scholar
[180] Oikhberg, T. and Ricard, É., Operator spaces with few completely bounded maps, Math. Ann. 328 (2004), 229259.Google Scholar
[181] Oikhberg, T. and Rosenthal, H. P., Extension properties for the space of compact operators, J. Funct. Anal. 179 (2001), 251308.Google Scholar
[182] Osajda, D., Small cancellation labellings of some infinite graphs and applications, arXiv:1406.5015, 2014.Google Scholar
[183] Osajda, D., Residually finite non-exact groups, Geom. Funct. Anal. 28 (2018), 509517.Google Scholar
[184] Ozawa, N., On the set of finite-dimensional subspaces of preduals of von Neumann algebras, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 309312.Google Scholar
[185] A non-extendable bounded linear map between C∗-algebras, Proc. Edinb. Math. Soc. (2) 44 (2001), 241248.Google Scholar
[186] Ozawa, N., On the lifting property for universal C-algebras of operator spaces, J. Operator Theory 46 no. 3, suppl. (2001), 579591.Google Scholar
[187] Ozawa, N., Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 691695.Google Scholar
[188] Ozawa, N., An application of expanders to B( 2) ⊗ (2003), 499–510.Google Scholar
[189] Ozawa, N., About the QWEP conjecture, Internat. J. Math. 15 (2004), 501530.Google Scholar
[190] Ozawa, N., Examples of groups which are not weakly amenable, Kyoto J. Math. 52 (2012), 333344.Google Scholar
[191] Ozawa, N., About the Connes embedding conjecture: algebraic approaches, Jpn. J. Math. 8 (2013), 147183.Google Scholar
[192] Ozawa, N., Tsirelson’s problem and asymptotically commuting unitary matrices, J. Math. Phys. 54 (2013), 032202, 8 pp.Google Scholar
[193] Ozawa, N. and Pisier, G., A continuum of C∗-norms on B(H)⊗B(H) and related tensor products, Glasgow Math. J. 58 (2016), 433443.Google Scholar
[194] Paterson, A., Amenability, American Mathematical Society, Mathematical Surveys and Monographs, 29, 1988.Google Scholar
[195] Paulsen, V., Completely bounded maps and dilations, Pitman Research Notes 146. Pitman Longman (Wiley) 1986.Google Scholar
[196] Paulsen, V., Completely bounded maps and operator algebras, Cambridge University Press, Cambridge, 2002.Google Scholar
[197] Paulsen, V. and Suen, C.-Y., Commutant representations of completely bounded maps, J. Operator Theory 13 (1985), 87101.Google Scholar
[198] Pestov, V., Operator spaces and residually finite-dimensional C-algebras, J. Funct. Anal. 123 (1994), 308317.Google Scholar
[199] Pier, J. P., Amenable locally compact groups, Wiley Interscience, New York, 1984. B( 2), J. Funct. Anal. 198Google Scholar
[200] Pisier, G., Factorization of linear operators and the geometry of Banach spaces, CBMS (Regional Conferences of the A.M.S.) no. 60 (1986), Reprinted with corrections 1987.Google Scholar
[201] Pisier, G., Remarks on complemented subspaces of von Neumann algebras, Proc. Royal Soc. Edinburgh 121 A (1992), 14.Google Scholar
[202] Pisier, G., Espace de Hilbert d’opérateurs et interpolation complexe, Comptes Rendus Acad. Sci. Paris, Série I 316 (1993), 4752.Google Scholar
[203] Pisier, G., Projections from a von Neumann algebra onto a subalgebra, Bull. Soc. Math. France 123 (1995), 139153.Google Scholar
[204] Pisier, G., A simple proof of a theorem of Kirchberg and related results on C-norms, J. Operator Theory 35 (1996), 317335.Google Scholar
[205] Pisier, G., The operator Hilbert space OH, complex interpolation and tensor norms, Memoirs Amer. Math. Soc. 122 no. 585 (1996), 1103.Google Scholar
[206] Pisier, G.. Quadratic forms in unitary operators, Linear Algebra Appl. 267 (1997), 125137.Google Scholar
[207] Pisier, G., Similarity problems and completely bounded maps. Second, Expanded Edition, Springer Lecture Notes, 1618 (2001).Google Scholar
[208] Pisier, G., Introduction to operator space theory, Cambridge University Press, Cambridge, 2003.Google Scholar
[209] Pisier, G., Remarks on B(H) ⊗ B(H), Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), 423428.Google Scholar
[210] Pisier, G., Grothendieck’s theorem, past and present, Bull. Amer. Math. Soc. 49 (2012), 237323.Google Scholar
[211] Pisier, G., Random matrices and subexponential operator spaces, Israel J. Math. 203 (2014), 223273.Google Scholar
[212] Pisier, G., Quantum expanders and geometry of operator spaces, J. Europ. Math. Soc. 16 (2014), 11831219.Google Scholar
[213] Pisier, G., On the metric entropy of the Banach–Mazur compactum, Mathematika 61 (2015), 179198.Google Scholar
[214] Pisier, G., Martingales in Banach spaces, Cambridge University Press, Cambridge, 2016.Google Scholar
[215] Pisier, G. and Xu, Q., Non-commutative Lp-spaces, Handbook of the geometry of Banach spaces, vol. II, North-Holland, Amsterdam, 2003.Google Scholar
[216] Popa, S., On the Russo–Dye theorem, Michigan Math. J. 28 (1981), 311315.Google Scholar
[217] Popa, S., A short proof of “injectivity implies hyperfiniteness” for finite von Neumann algebras, J. Operator Theory 16 (1986), 261272.Google Scholar
[218] Popa, S., Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math. 111 (1993), 375405.Google Scholar
[219] Pusz, W. and Woronowicz, S. L., Form convex functions and the WYDL and other inequalities, Lett. Math. Phys. 2 (1977/78), 505512.Google Scholar
[220] Pusz, W. and Woronowicz, S. L., Functional calculus for sesquilinear forms and the purification map, Rep. Mathematical Phys. 8 (1975), 159170.Google Scholar
[221] Pytlik, T. and Szwarc, R., An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986), 287309.Google Scholar
[222] Rădulescu, F., A comparison between the max and min norms on C(Fn) ⊗ C(Fn), J. Operator Theory 51 (2004), 245253.Google Scholar
[223] Rădulescu, F., Combinatorial aspects of Connes’s embedding conjecture and asymptotic distribution of traces of products of unitaries, Operator Theory 20, 197205, Theta Ser. Adv. Math. 6, Theta, Bucharest, 2006.Google Scholar
[224] Rankin, R. A., Modular forms and functions, Cambridge University Press, Cambridge, 1977.Google Scholar
[225] Rieffel, M., Induced representations of C-algebras, Adv. Math. 13 (1974), 176257.Google Scholar
[226] Sakai, S., C-algebras and W-algebras, Springer-Verlag, New York, 1971.Google Scholar
[227] Sarnak, P., What is an expander? Notices Amer. Math. Soc. 51 (2004), 762763.Google Scholar
[228] Selberg, A., On the estimation of Fourier coefficients of modular forms, Proceedings of the Symposium Pure Mathematics, Vol. VIII, American Mathematical Society, Providence, RI, 1965, pp. 115.Google Scholar
[229] Sherman, D., On cardinal invariants and generators for von Neumann algebras, Canad. J. Math. 64 (2012), 455480.Google Scholar
[230] Slofstra, W., The set of quantum correlations is not closed, Forum Math. Pi 7 (2019), e1, 41 pp.Google Scholar
[231] Slofstra, W., A group with at least subexponential hyperlinear profile, arXiv:1806.05267, 2018.Google Scholar
[232] Smith, R. R., Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), 156175.Google Scholar
[233] Størmer, E., On the Jordan structure of C-algebras, Trans. Amer. Math. Soc. 120 (1965), 438447.Google Scholar
[234] Størmer, E., Multiplicative properties of positive maps, Math. Scand. 100 (2007), 184192.Google Scholar
[235] Størmer, E., Positive linear maps of operator algebras, Springer, Heidelberg, 2013.Google Scholar
[236] Suen, C-Y., Completely bounded maps on C*-algebras, Proc. Amer. Math. Soc. 93 (1985), 8187.Google Scholar
[237] Szwarc, R., An analytic series of irreducible representations of the free group, Ann. Inst. Fourier 38 (1988), 87110.Google Scholar
[238] Takesaki, M., A note on the cross-norm of the direct product of C-algebras, Kodai Math. Sem. Rep. 10 (1958), 137140.Google Scholar
[239] Takesaki, M., Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249310.Google Scholar
[240] Takesaki, M., Theory of Operator algebras, vol. I, Springer-Verlag, Berlin, Heidelberg, New York, 1979.Google Scholar
[241] Takesaki, M., Theory of Operator algebras, vol. II, Springer-Verlag, Berlin, Heidelberg, New York, 2003.Google Scholar
[242] Takesaki, M., Theory of Operator algebras, vol. III, Springer-Verlag, Berlin, Heidelberg, New York, 2003.Google Scholar
[243] Tao, T., Expansion in finite simple groups of Lie type, American Mathematical Society, Providence, RI, 2015.Google Scholar
[244] Thom, A., Examples of hyperlinear groups without factorization property, Groups Geom. Dyn. 4 (2010), 195208.Google Scholar
[245] Tomiyama, J., Tensor products and projections of norm one in von Neumann algebras, Lecture Notes, University of Copenhagen, 1970.Google Scholar
[246] Tomiyama, J., Tensor products and approximation problems of C-algebras, Publ. Res. Inst. Math. Sci. 11 (1975/76), 163183.Google Scholar
[247] Tomiyama, J., On the product projection of norm one in the direct product of operator algebras. Tôhoku Math. J. 11, no. (1959) 305313.Google Scholar
[248] Tomiyama, J., On the projection of norm one in W-algebras. III, Tôhoku Math. J. (2) 11 (1959) 125129.Google Scholar
[249] Tonge, A., The complex Grothendieck inequality for 2 × 2 matrices, Bull. Soc. Math. Grèce (N.S.) 27 (1986), 133136.Google Scholar
[250] Trott, S., A pair of generators for the unimodular group, Canad. Math. Bull. 5 (1962), 245252.Google Scholar
[251] Tsirelson, B.S., Quantum generalizations of Bell’s inequality, Lett. Math. Phys. 4 (1980), 93100.Google Scholar
[252] Valette, A., Minimal projections, integrable representations and property (T), Arch. Math. (Basel) 43 (1984), 397406.Google Scholar
[253] Voiculescu, D., Property T and approximation of operators, Bull. London Math. Soc. 22 (1990), 2530.Google Scholar
[254] Voiculescu, D., Dykema, K., and Nica, A., Free Random Variables, American Mathematical Society, Providence, RI, 1992.Google Scholar
[255] Wassermann, S., On tensor products of certain group C-algebras, J. Funct. Anal. 23 (1976), 239254.Google Scholar
[256] Wassermann, S., Injective W-algebras, Proc. Cambridge Phil. Soc. 82 (1977), 3947.Google Scholar
[257] Wassermann, S., A pathology in the ideal space of L(H) ⊗ L(H), Indiana Univ. Math. J. 27 (1978), 10111020.Google Scholar
[258] Wassermann, S., Exact C-algebras and related topics, Lecture Notes Series, 19. Seoul National University, Seoul, 1994.Google Scholar
[259] Wassermann, S., C-algebras associated with groups with Kazhdan’s property T, Ann. Math. 134 (1991), 423431.Google Scholar
[260] Werner, D., Some lifting theorems for bounded linear operators, Functional analysis (Essen, 1991), 279291, Lecture Notes in Pure and Applied Mathematics, 150, Dekker, New York, 1994.Google Scholar
[261] Willig, P., On hyperfinite W∗-algebras, Proc. Amer. Math. Soc. 40 (1973), 120122.Google Scholar
[262] Wilson, J. S., On characteristically simple groups, Math. Proc. Cambridge Philos. Soc. 80 (1976), 1935.Google Scholar
[263] Woronowicz, S., Selfpolar forms and their applications to the C-algebra theory, Rep. Mathematical Phys. 6 (1974), 487495.Google Scholar
[264] Zhang, C., Representation and geometry of operator spaces, Ph.D. thesis, University of Houston, 1995.Google Scholar
[265] Zippin, M., The separable extension problem, Israel J. Math. 26 (1977), 372387.Google Scholar
[266] Zippin, M., Extension of bounded linear operators, Handbook of the geometry of Banach spaces, Vol. 2, 1703–1741, North-Holland, Amsterdam, 2003.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Gilles Pisier, Texas A & M University
  • Book: Tensor Products of <I>C</I>*-Algebras and Operator Spaces
  • Online publication: 10 February 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Gilles Pisier, Texas A & M University
  • Book: Tensor Products of <I>C</I>*-Algebras and Operator Spaces
  • Online publication: 10 February 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Gilles Pisier, Texas A & M University
  • Book: Tensor Products of <I>C</I>*-Algebras and Operator Spaces
  • Online publication: 10 February 2020
Available formats
×